Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Third Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Analog Electronics**

Time 13 hrs

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Derive an expression for A_v, Z_i and Z₀ for CE-fixed bias using r_e-equivalent model.

(08 Marks)

Define h-parameters and derive h-parameters model of CE-BJT.

(08Marks)

For the emitter-follower network of Fig.Q2(a). Determine: i) re ii) Z_i iii) Z_0 iv) A_V. (08 Marks)

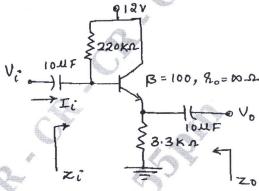
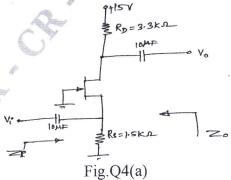


Fig.Q2(a)


With a neat circuit explain the high frequency transistor small-signal AC equivalent circuit. (08 Marks)

Module-2

- With circuit diagram of JFET small signal model, determine g_m and r_d . (08 Marks) 3
 - For the JFET common-source amplifier using fixed-bias configuration. Derive expressions for Z_i , Z_0 and Av using AC equivalent circuit. (08 Marks)

OR

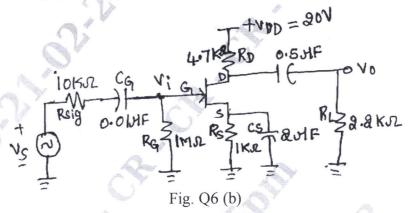
For the JFET common-gate configuration shown below, calculate Z_i, Z₀ and Av. (08 Marks)

With neat diagram, explain construction of n-channel JFET, and also draw its (08 Marks) characteristics.

Module-3

5 a. Prove that

Input capacitance is $C_{Mi} = (1 - A_v)C_f$ and


Output capacitance is $C_{MO} = \left(1 - \frac{1}{A_v}\right)C_f$ using miller effect.

(08 Marks)

b. Describe the factors that affect the low frequency response of a BJT-CE amplifier. (08 Marks)

OR

- 6 a. Explain high frequency response of FET amplifier and derive expression for cut off frequencies, defined by input and output circuits (f_{Hi} and f_{Ho}). (08 Marks)
 - b. Determine the lower cut off frequency for the network shown in Fig. Q6 (b), using following parameters $g_m = 2$ ms, $r_d = \infty \Omega$, $I_{DSS} = 8$ mA, $V_P = -4V$, $V_{DD} = 20$ V. (08 Marks)

Module-4

- 7 a. Mention the types of feedback connections. Draw their block diagrams indicating input and output signal. (08 Marks)
 - b. With a neat circuit diagram, explain the working principle of FET phase-shift oscillator, with relevant equations. (08 Marks)

OR

- 8 a. What are the effects of negative feedback in an amplifier? Show how bandwidth of an amplifier increases with negative feedback. (06 Marks)
 - b. With a neat circuit and waveforms, explain the working operation of UJT relaxation oscillator. (05 Marks)
 - c. Determine the voltage gain, input and output impedance with feedback for voltage series feedback having A = -100, $R_i = 10 \text{ K}\Omega$ and $R_0 = 20 \text{ k}\Omega$ for feedback factor $\beta = -0.1$.

(05 Marks)

Module-5 CMRIT LIBRARY BANGALORE - 560 037

9 a. Explain series – fed class – A power amplifier. Show that its maximum conversion efficiency is 25%. (08 Marks)

b. Explain with circuit diagram the operation of Class-B push-Pull amplifier using complementary—symmetry transistor pair. Also mention advantages and disadvantages of the circuit.

(08 Marks)

OR

- 10 a. An ideal class –B push-pull power amplifier with input and output transformers has $V_{CC}=20V,\ N_2=2N_1$ and $R_L=20\Omega.$ The transistors has $h_{fe}=20$. Let the input be sinusoidal. For the maximum output signal at $V_{CE(P)}=V_{CC}$, determine :
 - i) The output signal power
 - ii) The collector dissipation in each transistor CMRIT LIBRARY
 - iii) Conversion efficiency.

 BANGALORE 560 0

b. The following distortion readings are available for a power amplifier, $D_2=0.2,\,D_3=0.02,\,D_4=0.06,\,$ with $I_1=3.3A$ and $R_C=4\Omega.$

- i) Calculate the total harmonic distortion
- ii) Determine the fundamental power component
- iii) Calculate the total power.

(08 Marks)

(08 Marks)