Third Semester B.E. Degree Examination, Dec.2023/Jan.2024
Engineering Electromagnetics

Time 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. State vector form of Coloumb's law of force between two point charges and indicate the units of the quantities in the equation. (04 Marks)
 - b. Let a point charge $Q_1 = 25nC$ be located at A(4, -2, 7) and charge $Q_2 = 60nC$ be at B(-3, 4, -2). Find \vec{E} at C(1, 2, 3) and find the direction of \vec{E} . (10 Marks)
 - c. Define Electric Field intensity due to number of point charge in a vector form. (02 Marks)

OR

- 2 a. Derive an expression for the electric field intensity due infinite line charge. (06 Marks)
 - b. Define electric flux density. Find \vec{D} in Cartesian co-ordinate system at a point p(6, 8, -10) due to a point charge of 40mC at the origin and a uniform line charge of $\rho_L = 40\mu\text{C/m}$ on the z-axis.

Module-2

- 3 a. State and prove Gauss law and derive first Maxwell's equations from it. (05 Marks)
 - b. Given a 60 μ c point charge located at the origin. Find the total electric flux passing through the closed surface defined by $\rho = 26$ cm and $z = \pm 26$ cm. (04 Marks)
 - c. State and prove the Divergence theorem. (05 Marks)
 - d. Given the electric flux density $D=0.3r^2\hat{a}_r$ nc/m² in free space. Find E at the point $P(r=2,\theta=25^\circ,\phi=90^\circ)$. (02 Marks)

OR

4 a. Prove that the work done in moving a charge in the electric field is

 $W = -Q \int_{\text{initial}}^{\text{final}} E.d \, \ell. \tag{06 Marks}$

- b. Calculate the work done in moving a 4C charge from B(1, 0, 0) to A(0, 2, 0) along the path y = 2 2x, $\tau = 0$ in the field $E = (5x a_x + 5y a_y) V/m$. (05 Marks)
- c. Show that ∇ . $J = -\frac{\partial \rho_v}{\partial t}$ with usual notations. (05 Marks)

Module-3

- 5 a. State and explain Biot-Savart's law. (05 Marks)
 - b. Two parallel conducting discs are separated by distance 5mm at z = 0 and z = 5mm. If v = 0 at z = 0 and v = 100v at z = 5mm, find the charge densities on the discs. (05 Marks)
 - c. Using Poisson's equation obtain the expression for the junction potential in a p-n junction.
 (06 Marks)

- a. Derive Laplace and Poisson's equation starting from the Gauss's law and also write Laplace's equation in Cartesian, cylindrical and spherical coordinate system.
 - b. Evaluate both sides of the Stoke's theorem for the field $\overline{H} = 6xy$ $ax 3y^2 ay$ A/m and the rectangular path around the region $2 \le x \le 5$, $-1 \le y \le 1$, z = 0 let the positive direction of (08 Marks) ds be âz.

Module-4

- The field B = $(-2a_x + 3a_y + 4\hat{a}_z)$ mT is present in free space. Find the vector force exerted on a straight wire carrying a current of 12A in the aAB direction. Given A(1, 1, 1,) and (04 Marks) B(2, 1, 1).
 - Two differential current elements , $I_1\Delta L_1 = 3\times 10^{-6}$ A-m at $P_1(1,0,0)$ and $I_2\Delta L_2 = 3 \times 10^{-6} (-0.5 \,\hat{a}_x + 0.4 \,\hat{a}_y + 0.3 \,\hat{a}_z)$ A-m at P2(2, 2, 2) are located in free space. Find (06 Marks) the vector force exerted on I2ΔL2 by I1ΔL1.
 - c. Find the magnetization in a magnetic material where
 - $\mu = 1.8 \times 10^{-5} \text{ H/m}$ and H = 120 A/m.
 - $\mu = 1.0 \land 10 \Rightarrow 11/111$ and H = 120 A/III. $\mu_r = 22$, there are 8.3×10^{22} atoms/m and each atom has a dipole moment of $4.5 \times 10^{-27} \text{ A/m}^2$.
 - iii) $B = 300 \mu T \times \chi_m = 15$.

(06 Marks)

Derive the Magnetic Boundary Condition?

(06 Marks)

Let the permittivity is $5\mu H/m$ in the region 1 where x < 0 and $20~\mu H/m$ in the region 2 where x > 0, and if $H = (300a_x - 400a_y + 500\,\hat{a}_z)$ A/m and if there is a surface current density $K = (150 \hat{a}_y - 200 \hat{a}_z)$ A/m at x = 0.

Find i) $\mid H_{t_1} \mid$ ii) $\mid H_{N_1} \mid$ iii) $\mid H_{t_2} \mid$ iv) $\mid H_{N_2} \mid$.

(06 Marks)

Derive the expression for the energy density in a magnetic field.

(04 Marks)

Module-5

Explain Displacement current density and conduction current density. 9

(04 Marks)

List Maxwell's equations for steady and time varying fields in

ii) Integral from.

(06 Marks)

c. Do the fields $\vec{E} = E_m \sin x \sin t \hat{a}_y$ and $\vec{H} = \frac{E_m}{a} \cos x \cos t \hat{a}_z$ satisfy Maxwell's equations?

CMRIT LIBRARY BANGALORE - 560 037

(06 Marks)

- What is Forward travelling wave and Backward travelling wave in free space? (02 Marks) 10
 - A uniform plane wave in free space is given by $E_s = 200 \ |\underline{30}^{\circ} \cdot e^{-j250z} \ \hat{a}_x \ V/m$.

Find β , w, f, λ , η , H.

(06 Marks)

State and prove Poynting theorem.

(08 Marks)