

First Semester MCA Degree Examination, June/July 2023 Data Structures with Algorithms

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

	Module - 1	M	L	C
Q.1 a	What are data structures? Explain the classification of data structures.	6	L2	CO
b	Explain polish and reverse polish expression.	4	L2	CO
c.	Define STACK. Write C program to implement stack operation using arrays (by passing parameters).	10	L3	CO
	OR			
Q.2 a.	Write a C program to convert infix to postfix expression.	10	L3	CO
b	Show the detailed contents of stack for an expression : $623 + -382/+ *2 - 3 + $ and evaluate the expression.	10	L3	CO2
-	Module – 2			1
Q.3 a.	Write a recursive function fact(n) to find the factorial of an integer. Diagrammatically explain how the stacking and unstacking takes place during execution for fact(u).	10	L3	CO2
b	in a linear queue.	10	L3	CO2
	OR OR			
Q.4 a.	What is recursion? Write a program to implement towers of Hanoi problem using recursion and trace the output for 3 disks.	10	L3	CO2
b	Define circular queue. Explain its advantages over ordinary queue and C program to implement circular queue.	10	L3	CO2
	Module – 3			
Q.5 a.	Discuss about different types of memory management functions.	10	L2	CO3
b.	Write a function for each of the following operations on linked list: i) Insert a node at the beginning ii) Delete a node at the front end.	10	L3	CO3
	OR			
Q.6 a.	Write a note on getnode() and freenode().	6	L2	CO3
b.		4	L2	CO3
c.	singly linked list.	10	L2	CO3
	1 of 2			

			2	2M(CA13
		Module – 4			
Q.7	a.	Define a Tree. With suitable example explain: i) Binary Tree ii) Complete binary tree iii) Strictly binary tree iv) Skewed binary tree	10	L2	CO3
	b.	Write the routines to traverse the given tree using i) Pre-order traversal ii) Post-order traversal iii) In-order traversal.	10	L2	CO3
Q.8	a.	OR Construct a binary search tree for the given set of values 14, 15, 4, 9, 7, 18, 3, 5, 16, 20. Also perform inorder, preorder, and postorder traversal of the	10	L3	CO3
		obtained tree.			
	b.	Explain threaded binary tree and their representation with a neat diagram.	10	L2	CO3
		Module – 5			CO3
Q.9	a.	Define Graphs. Give the adjacency matrix and adjacency list representation for the following graph in Fig.Q.9(a). Fig.Q.9(a)			
	b.	Briefly explain Breadth-First Search (BFS) and Depth-First Search (DFS) traversal of a graph. Also, show the BFS and DFS traversals for the following graph in Fig.Q.9(b).	10	L3	CO3
		OR			
Q.10	a.	Write an algorithm for insertion sort suppose an array contains 8 elements as follows: 77, 33, 44, 11, 88, 22, 66, 55. Sort the array using insertion sort algorithm.	10	L3	CO4
	b.	What is hashing? Explain the following hash functions with proper examples: i) Division ii) Midsquare iii) Folding.	10	L3	CO4

* * * * *