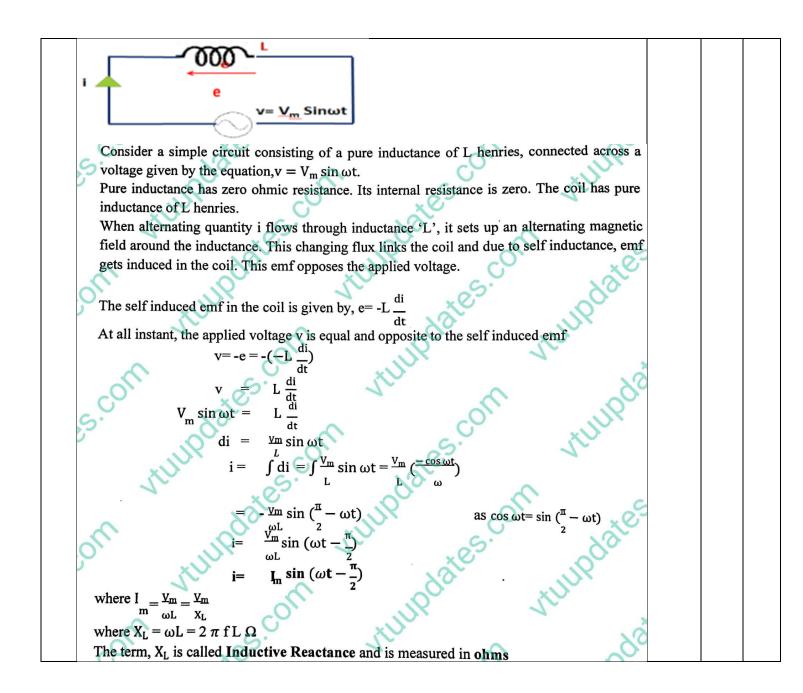
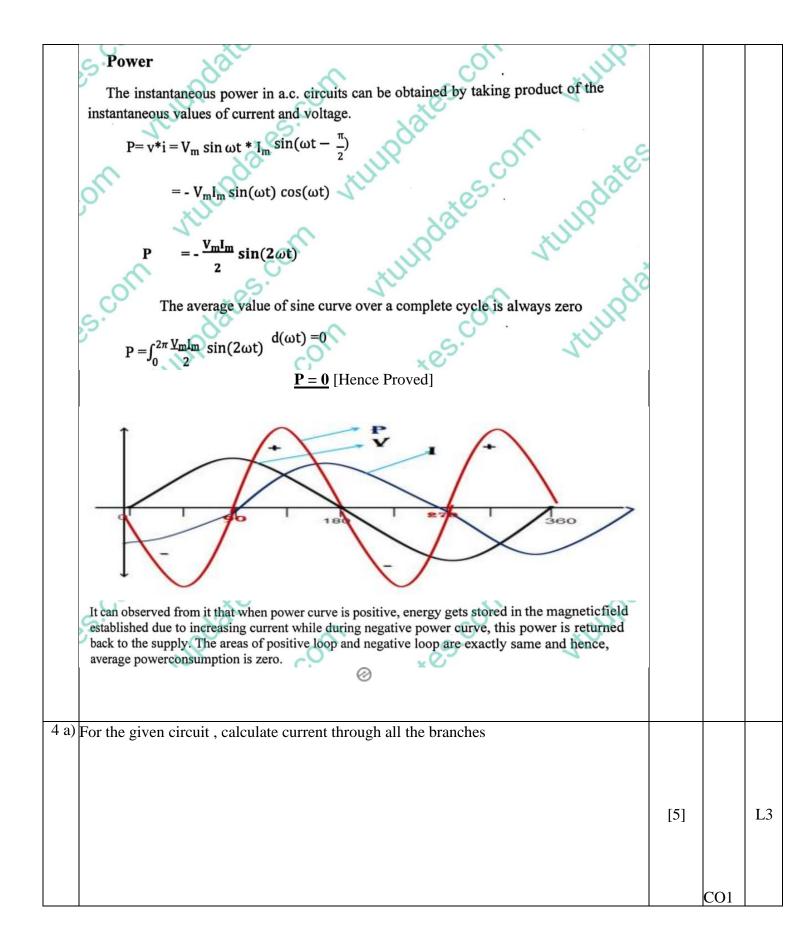
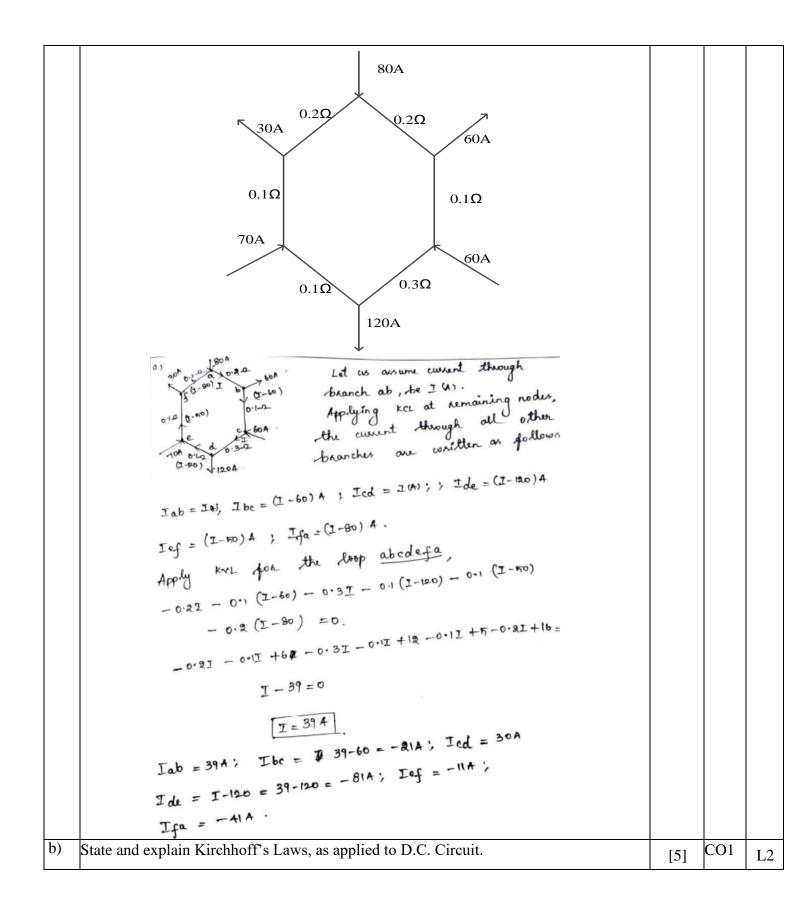

CMR INSTITUTE OI TECHNOLOG			USN	Assesment Test	I						CMR	
Sub: Introduction to Electrical Engineering Code:						BESCK	BESCK104B					
Date:	2/11/2023	Duration:	90 mins	Max Marks:	50	Sem:	1st sem	Branch:	Chemi	hemistry cycle		
Answer any FIVE FULL Questions												
						Marks	OBE CO RBT					
1 a) State and explain Ohm's law, List out its limitation.							[4]	CO1	L1			


The nation of potential diggenence (v) between The nation of potential diggenence (v) between any two points on a conductor to the current (I. glowing between them in convolution, provided the temperature of the conductor doesn't change $\frac{V}{I} = constant$ $= R(-\Omega)$ continued			
R- constant of proportionality - resistance of the conductor . - resistance of the conductor .			
Graphical representation of Ohm's law:			
Slope = $\frac{\Delta v}{\Delta x} = \frac{I}{v} = \frac{I}{R} = G_1$ where G_1 is conductance (signers) (-v-).			
L'imitations - OHM'S LAW 1) It cannot be applied to non-linear devices line diodu, zener déodes, transistons, voltage line diodu, zener deodes, transistons, voltage line			
 a) It to no of branches and the shoring more no of branches and the solutions a) Not suitable for non-metallic conductors a) Not suitable for conbide, graphite etc. b) Explain Nuclear power generation 	[6]	CO5	L2



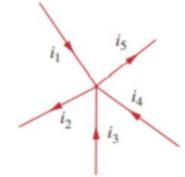


Sa) 8-0- 6-0 4-0			
100 - 2, 221-0 - 2210-0 - 216-0- 12 13. 3.0 6.0 40			
8-2- 6-2 4-2- KVL @ L1,			
$-8i_{1} - 24(i_{1} - i_{2}) - 8i_{1} + i_{00} = 0$			
-81, -241, +2412 -81, = -100.			
$[-40i_1 + 84i_2 + 0i_3 = -100] - 0$.			
Kyl Q L2,			
$-6i_2 - 24(i_2 - i_3) - 6i_2 - 24(i_3 - i_1) = 0$			
$-6i_{2} - 24i_{2} + 24i_{3} - 6i_{2} - 24i_{2} + 24i_{1} = 0$			
$\left[\frac{24i_{1}-60i_{2}}{2}+24i_{3}=0\right] - (2)$			
KNL@L3			
-4ig - 16ig - 4ig - 24(ig - i2) = 0.			
- Ai3 - 1613 - 413 - 2413 + 2412 =0			
$01_1 + 241_2 - 481_3 = 0$, - (3)			
Solving above equations,			
1, = 3.57 A			
12 = 1. 78 A			
13 = 0.89A .			
Current Abrough 16.2 resultor is is			
. Pewer dissipated = 13×16 .			
/ = 0.89 ×16			
= 12.67 kl			
P= 12-67 W.			
			_
For a pure inductor excited by sinusoidal varying AC voltage, show that the averag	e	CO2	
power consumed by inductor is zero with necessary diagrams and waveforms Answer:-	[5]		

The current or voltage of any circuit branch can also be calculated using Kirchhoff's Law. These laws are valid in AC and DC networks at low frequencies.

Kirchhoff's laws are classified into two types:

- Kirchhoff's Current Law (KCL)
- Kirchhoff's Voltage Law (KVL)

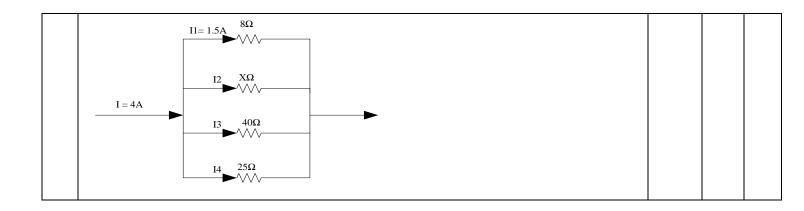

Kirchhoff's Current Law

Kirchhoff's current law is also known as Kirchhoff's First law or Kirchhoff's Law of the junction, but the most used term is Kirchhoff's Current Law or KCL. KCL is based on the law of conservation of charge.

Kirchhoff's current law states that the algebraic sum of currents entering a node or a closed boundary equals zero.

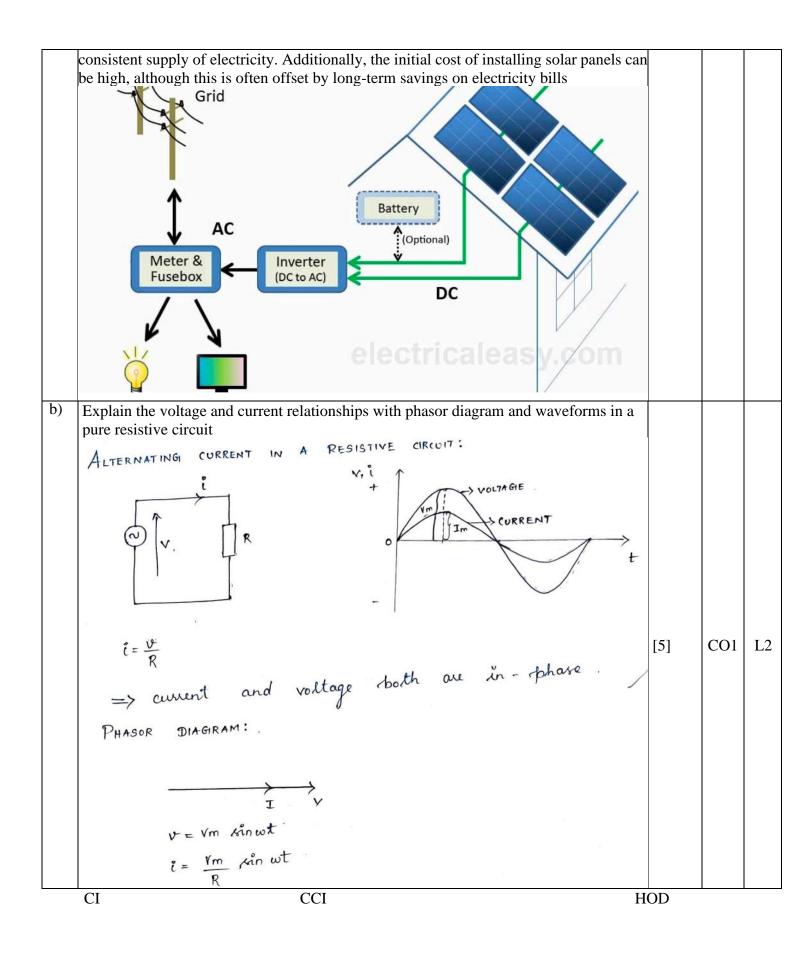
If there are N number of branches connected to a node and it is the current of the nth branch, then mathematically, KCL states,

$$^{N}\sum_{n=1}i_{n}=0$$



Applying KCL to the above node,

$$-i_{1} + i_{2} - i_{3} - i_{4} + i_{5} = 0$$
$$i_{2} + i_{5} = i_{1} + i_{3} + i_{4}$$


Current leaving=current entering

Kirchhoff's Voltage Law			
Kirchhoff's Voltage Law is also known as Kirchhoff's Second law or KVL. KVL is based on the law of conservation of energy.			
Kirchhoff's Voltage Law:			
Kirchhoff's Voltage Law states that the algebraic sum of voltages around a closed path or loop in a circuit equals zero. If there are M number of voltages in a loop and V_m is the m th voltage, then mathematically, KVL can be written as:			
$^{M}\sum_{n=1}v_{m}=0$			
Calculate i) Current through each resistor ii) Unknown resistance x? iii) Req. iv) Power consumed.			
	[10]		L.
		CO1	

5)
$$T_{1} = +5A$$
 $\frac{9}{42}$
 $T_{2} = \frac{5}{4}$
 $T_{2} = \frac{1}{2}$
 $V_{0} + age dx op access $8.\pi$ is $V_{0.\pi} = T_{1} \times 8$
 $V_{0.\pi} = 12 \frac{2}{2}$
 $V_{0.\pi} = 12 \frac{2}{40}$
 $V_{0.\pi} = 12 \frac{2}{40}$
 $V_{0.\pi} = 12 \frac{2}{40}$
 $V_{0.\pi} = 0.3A$.
 $T_{1} = \frac{1}{2} \frac{1}{25} = 0.48A$.
 $T_{2} = \frac{1}{2} - (T_{1} + T_{3} + T_{4})$
 $T_{2} = T_{2} - (T_{1} + T_{3} + T_{4})$
 $T_{2} = T_{2} - (T_{1} + T_{3} + T_{4})$
 $T_{2} = 2 \cdot \frac{T_{2}}{T_{2}} A$.
 $T_{2} = 2 \cdot \frac{T_{2}}{T_{2}} A$.
 $T_{2} = 12 \times \chi \implies \chi = \frac{1}{2} \frac{12}{2 \cdot 72}$
 $\chi = 12 \times \chi \implies \chi = \frac{1}{2} \frac{12}{2 \cdot 72}$
 $\chi = 12 \times 39 \times 2$
 $V_{1} = 12 \times 5 = 60 \frac{1}{10}$$

	efine the RMS, average value, form factor and peak factor for a sinusoidal signal. erage Value:			
The con curr half RM	e average of all the instantaneous values of an alternating voltage and currents over one nplete cycle is called Average Value . If we consider symmetrical waves like sinusoidal rent or voltage waveform, the positive half cycle will be exactly equal to the negative f cycle. Therefore, the average value over a complete cycle will be zero . IS Value: at steady current which, when flows through a resistor of known resistance for a given			
peri	iod of time than as a result the same quantity of heat is produced by the alternating rent when flows through the same resistor for the same period of time is led R.M.S or effective value of the alternating current.	[10]	CO1	L2
qua	ak Factor is defined as the ratio of maximum value to the R.M.S value of an alternating antity. The alternating quantities can be voltage or current. The maximum value is peak value or the crest value or the amplitude of the voltage or current.			
The (cur cur	rm Factor: e ratio of the root mean square value to the average value of an alternating quantity rrent or voltage) is called Form Factor. The average of all the instantaneous values of rent and voltage over one complete cycle is known as the average value of the ernating quantities.			
Sol three usa Sol diree they Inv into equ Bat exc sun Mo pov has pov Sol on t Cos yea gen	plain Solar power generation with Block diagram lar power generation is the process of converting sunlight into electricity. This is done ough the use of solar panels, which capture the energy from the sun and convert it into ble electricity. The basic components of a solar power generation system include: lar Panels: Solar panels are made up of photovoltaic cells, which convert sunlight into ect current (DC) electricity. They are typically installed on rooftops or in fields where y can be exposed to the maximum amount of sunlight. verter: The inverter is used to convert the DC electricity produced by the solar panels to alternating current (AC) electricity, which can be used to power appliances and tipment. ttery Storage: Solar power generation systems can be equipped with batteries to store cess electricity generated during the day for use at night or during periods of low dight. onitoring System: A monitoring system is used to track the performance of the solar wer generation system and identify any issues that may arise. Solar power generation is several advantages over conventional energy sources, including: Renewable: Solar wer is a renewable energy source that will never run out. Environmentally Friendly: lar power generation produces no greenhouse gas emissions and has a minimal impact the environment. st-Effective: The cost of solar power generation has decreased significantly in recent urs, making it more accessible to homeowners and businesses. However, solar power heration also has some limitations, such as its dependence on sunlight and its ermittent nature, which means that energy storage solutions are needed to ensure a	[5]	CO5	L2

