

Internal Assessment Test 2 - May 2024

Sub:	Physics for EEE stream					Sub Code:	BPHYE202	Branch:			
Date:	21/05/2024 Duration: 90 mins Max Marks: 50 Sem/Sec: II Sem / M,N,O &							& P	OBE		
$\frac{Answer any FIVE FULL Questions}{Given: c = 3 \times 10^8 m/s; h = 6.625 \times 10^{-34} Js; k = 1.38 \times 10^{-23} J/K; m_e = 9.1 \times 10^{-31} kg; e = 1.6 \times 10^{-19} C, \epsilon_o = 8.854 X 10^{-12} F/m$								MARKS	СО	RBT	
1 (a)	1 (a) Define internal field. Derive an expression for Clausius- Mossotti equation.								[06]	CO2	L2
(b)) Discuss any two polarization mechanisms in dielectric materials.								[04]	CO2	L2
2 (a)	Define Fermi factor. Explain the variation of Fermi factor with temperature and energy.								[06]	CO2	L2
(b)	The Fermi energy of a metal is 5.5eV at 0K. Find the energy for which there is 1% probability of finding the electron at 330K.								[04]	CO2	L3
3 (a)	With the help of neat diagrams, discuss the different types of optical fibers .								[06]	CO1	L2
(b)	b) For an optical fiber, given that the numerical aperture is 0.30 and RI of cladding is 1.53. Calculate the fractional index change and the acceptance angle.								[04]	CO1	L3

РТО

CMRIT

USN/ ROLL NO										
--------------------	--	--	--	--	--	--	--	--	--	--

Internal Assessment Test 2 - May 2024

						•						
Sub:	Physics for EEE stream				Sub Code:	BPHYE202	Branch:					
Date:	21/05/2024	Duration:	90 mins	Max Marks:	50	Sem/Sec:	II Sen	n / M,N,O &	ε P	OF	OBE	
	$\frac{Answer any FIVE FULL Questions}{Given: c = 3 \times 10^8 m/s; h = 6.625 \times 10^{-34} Js; k = 1.38 \times 10^{-23} J/K; m_e = 9.1 \times 10^{-31} kg; e = 1.6 \times 10^{-19} C, \epsilon_0 = 8.854 X 10^{-12} F/m$							MARKS	СО	RBT		
1 (a)	Define internal field. Derive an expression for Clausius- Mossotti equation.						[06]	CO2	L2			
(b)	Discuss any two polarization mechanisms in dielectric materials.						[04]	CO2	L2			
2 (a)	Define Fermi factor. Explain the variation of Fermi factor with temperature and energy.						[06]	CO2	L2			
(b)	The Fermi energy of a metal is 5.5eV at 0K. Find the energy for which there is 1% probability of finding the electron at 330K.						[04]	CO2	L3			
3 (a)	With the help of neat diagrams, discuss the different types of optical fibers .							[06]	CO1	L2		
· · ·	For an optical fiber, given that the numerical aperture is 0.30 and RI of cladding is 1.53. Calculate the fractional index change and the acceptance angle.						[04]	CO1	L3			
								Р	то			

4 (a)	Obtain an expression for numerical aperture and arrive at the condition for propagation of signal in an optical fiber	[6]	CO2	L2
(b)	Discuss the intensity based displacement sensor using optical fibers	[4]	CO2	L2
	Give a brief account of the BCS theory of superconductivity.	[6]	CO2	L2
	The critical field is 2.7×10^4 A/m at 9K and 5.3×10^4 A/m at 6K . Calculate the transition temperature and the critical magnetic field at 0 K.	[4]	CO2	L3
6 (a)	Differentiate between Type I and Type II superconductors.	[6]	CO2	L2
(b)	Explain the construction and working of Maglev vehicles.	[4]	CO2	L2
7 (a)	Discuss point to point communication system. Mention its advantages and disadvantages.	[6]	CO1	L2
(b)	The attenuation co-efficient of an optical fiber is 0.18 dB/Km. What fraction of its initial intensity remains after 1200m?	[4]	CO1	L3

4 (a)	Obtain an expression for numerical aperture and arrive at the condition for propagation of signal in an optical fiber	[6]	CO2	L2
(b)	Discuss the intensity based displacement sensor using optical fibers	[4]	CO2	L2
	Give a brief account of the BCS theory of superconductivity.	[6]	CO2	L2
(b)	The critical field is 2.7×10^4 A/m at 9K and 5.3×10^4 A/m at 6K . Calculate the transition temperature and the critical magnetic field at 0 K.	[4]	CO2	L3
6 (a)	Differentiate between Type I and Type II superconductors.	[6]	CO2	L2
(b)	Explain the construction and working of Maglev vehicles.	[4]	CO2	L2
7 (a)	Discuss point to point communication system. Mention its advantages and disadvantages.	[6]	CO1	L2
(b)	The attenuation co-efficient of an optical fiber is 0.18 dB/Km. What fraction of its initial intensity remains after 1200m?	[4]	CO1	L3