| USN | | | | | | |-----|--|--|--|--|--| ## Internal Assessment Test II - December 2023 | Sub: | Engineering Mathematics-I | | | | | Sub Code: | BMATS101 | | | | |-------|--|---|-------------------|--|----------------------------------|-------------------------------|--------------------------------|------|-----|-----| | Date: | 01/12/2023 | Duration: | 90 mins | 50 | Sem / Sec: | I / I to L (Chem | CYCLE) | 0 | BE | | | | Question 1 is compulsory and answer any SIX questions from the rest. | | | | | | | | CO | RBT | | 1. | Derive the exp | pression for | the radius | of curvature fo | or the | curve r = | $\mathbf{f}(oldsymbol{ heta})$ | [08] | CO1 | L3 | | 2. | Evaluate: (i) l_x | $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{1}$ | /x (ii) li | $\lim_{t\to 0} \left(\frac{(a^x + b^x + c^x)}{3} \right)$ | $\left(\frac{1}{x}\right)^{1/x}$ | | | [07] | CO2 | L3 | | 3. | Find the angle | between th | ne curves r^r | $a^n = a^n \sec n\theta$ | and | $r^n = a^n \operatorname{co}$ | $\operatorname{sec} n\theta$. | [07] | CO1 | L3 | | 4. | Show that for t | the curve r = | = a (1 + cos(| θ) ρ² varies as | r. | | | [07] | CO1 | L3 | | | | | | | | | | | | | | USN | | | | | | |-----|--|--|--|--|--| ## Internal Assessment Test II – December 2023 | Sub: | Engineering M | Iathematics- l | [| | | Sub Code: | BMATS101 | | | | |-------|---------------------|---|----------------|---|----------------------------------|--------------------|--------------------------------|--------|-----|-----| | Date: | 01/12/2023 | Duration: | 90 mins | Max Marks: | 50 | Sem / Sec: | I/I to L (Chem | CYCLE) | 0 | BE | | | <u>Questio</u> | on 1 is compu | lsory and an | swer any SIX qu | uestio | ns from the r | est. | MARKS | CO | RBT | | 1. | Derive the exp | | | | | | $\mathbf{f}(oldsymbol{ heta})$ | [08] | CO1 | L3 | | 2. | Evaluate: (i) l_x | $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{1/2}$ | (ii) li | $ \underset{\rightarrow}{\mathbf{m}} \left(\frac{(a^x + b^x + c^x)}{3} \right) $ | $\left(\frac{1}{x}\right)^{1/x}$ | | | [07] | CO2 | L3 | | 3. | Find the angle | between th | e curves r^n | $a = a^n \sec n\theta$ | , and | $r^n = a^n \cos a$ | $\sec n \theta$. | [07] | CO1 | L3 | | 4. | Show that for t | the curve r = | a (1 + cost | θ), ρ^2 varies as | s r. | | | [07] | CO1 | L3 | | 5. | Obtain the pedal equation for the curve $r^n = a^n(cosn\theta + sinn\theta)$. | [07] | CO1 | L3 | |----|--|------|-----|----| | 3. | Obtain the pedal equation for the curve $T = u$ (cosmo + stituo). | [07] | | | | 6. | | [07] | CO1 | L3 | | | Find the radius of curvature of $y^2 = \frac{a^2(a-x)}{x}$ at $[a, 0]$. | | | | | | | [07] | CO2 | L3 | | 7. | Expand $e^{\cos x}$ by McLaurin's series up to the fourth-degree term. | | | | | | | | CO2 | L3 | | 8. | If u=r sin θ cos \emptyset , v=r sin θ sin \emptyset , w=rcos θ , prove that $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ =r ² sin θ | [07] | | | | 5. | Obtain the pedal equation for the curve $r^n = a^n(cosn\theta + sinn\theta)$. | [07] | CO1 | L3 | |----|--|------|-----|----| | 6. | Find the radius of curvature of $y^2 = \frac{a^2(a-x)}{x}$ at $[a, 0]$. | [07] | CO1 | L3 | | 7. | Expand $e^{\cos x}$ by McLaurin's series up to the fourth-degree term. | [07] | CO2 | L3 | | 8. | If u=r sin $\theta cos\emptyset$, v=r sin $\theta sin\emptyset$, w= $rcos\theta$, prove that $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ =r ² sin θ | [07] | CO2 | L3 |