

Roll

No.

Internal Assessment Test 1 – Nov. 2023

Sub:
Introduction to Python Programming--Solutions and

Scheme

Sub

Code:

BPLCK10

5B
Branch:

Chemistry

Cycle

Date: 6-12-2023 Duration: 90 min’s Max Marks: 50
Sem /

Sec:
I / Chemistry Cycle OBE

Answer any FIVE FULL QUESTIONS MARKS
CO RB

T

 1 (a)
What is list? Explain append(), insert(), remove() and sort() methods with

Example.

 Correct definition/description [2 marks]

 Example [1*4= 4 marks]

 A list is a value that contains multiple values in an ordered sequence. List
begins with an opening square bracket and ends with a closing square bracket, [].
Values inside the list are also called items. Items are separated with commas.

Spam= ['cat', 'bat', 'rat', 'elephant']
Print(Spam)
o/p: ['cat', 'bat', 'rat', 'elephant']

APPEND:
 To add new values to a list, use the append() and insert() methods.
append() method call adds the argument to the end of the list.
E.g.
spam = ['cat', 'dog', 'bat']
spam.append('moose')
print(spam)
output:
['cat', 'dog', 'bat', 'moose']

INSERT:
 The insert() method can insert a value at any index in the list. The first
argument to insert() is the index for the new value, and the second argument is the
new value to be inserted.
E.g.
spam = ['cat', 'dog', 'bat']
spam.insert(1, 'chicken')
print(spam)
output:
['cat', 'chicken', 'dog', 'bat']

REMOVE:

 The remove() method removes a value from the list.
spam = ['cat', 'bat', 'rat', 'elephant']
spam.remove('bat')
print(spam)
output:

[6] CO2 L2

['cat', 'rat', 'elephant']
Attempting to delete a value that does not exist in the list will
result in a ValueError error.

SORT:
 Lists of number values or lists of strings can be sorted with the sort() method.
For example
spam = ['ants', 'cats', 'dogs', 'badgers', 'elephants']
spam.sort()
print(spam)
output:
['ants', 'badgers', 'cats', 'dogs', 'elephants']

 (b) Explain the use of in and not in operators in list with suitable examples.

 Explanation [2 marks]

 Example with output [2 marks]

 The in and not in operators are used to check whether a value is or isn’t in a list.
Like other operators, in and not in are used in expressions and connect two values: a value to

look for in a list and the list where it may be found. These expressions will evaluate to a

Boolean value

'howdy' in ['hello', 'hi', 'howdy', 'heyas']

True

spam = ['hello', 'hi', 'howdy', 'heyas']

'cat' in spam

False

'howdy' not in spam

False

'cat' not in spam

True

EXAMPLE PROGRAM:

myPets = ['Tom', 'Heyas', 'Fat-tail']

print('Enter a pet name:')
name = input()

if name not in myPets:

print('I do not have a pet named ' + name)

else:
print(name + ' is my pet.')

Output:

Enter a pet name:

Footfoot

I do not have a pet named Footfoot

[4] CO2 L2

2 (a) Read N numbers from the console and create a list. Develop a program to

compute Mean, Variance and Standard Deviation with suitable messages.

 Correct logic [3 marks]

 Correct syntax [2 marks]

n = int(input("Enter the range of value to be read :"))

list = []

for i in range(0,n):

 print(“Enter number”,i)

 a=int(input())

[5] CO2 L3

 list.append(a)

mean = sum(list)/n

print("The mean of all the list number is:”,mean)

list1 = []

for i in list:

 b= (i-mean)**2

 list1.append(b)

variance= sum(list1)/n

print("The variance of all the list number is:”,variance)

print("The standard deviation of all the list number is:”,variance**0.5)

output:

Enter range of values to be read: 5

Enter number 1: 1

Enter number 2: 2

Enter number 3: 3

Enter number 4: 4

Enter number 5: 5

The mean of all the list number is: 3

The variance of all the list number is: 2

The standard deviation of all the list number is: 1.414

 (b) How is tuple different from list and which function is used to convert list to

tuple? Explain in detail.

 Difference between tuple and list [3 marks]

 converting list to tuple with example [2 marks]

 Tuple datatype, is an immutable form of the list data type. The tuple data type is

almost identical to the list data type, except in two ways. First, tuples are typed with
parentheses, (), instead of square brackets, [].

For example,

eggs = ('hello', 42, 0.5)
eggs[0]

'hello'

eggs[1:3]

(42, 0.5)
len(eggs)

3

But the main way that tuples are different from lists is that tuples, like strings, are
immutable. Tuples cannot have their values modified, appended, or removed.

eggs = ('hello', 42, 0.5)

eggs[1] = 99

output

TypeError: 'tuple' object does not support item assignment

If we have only one value in tuple, we can indicate this by placing a trailing comma after the

value inside the parentheses. Otherwise, Python will think we have just typed a
value inside regular parentheses. The comma is what lets Python know this is a tuple value.

type(('hello',))

<class 'tuple'>
type(('hello'))

<class 'str'>

Converting Types with the list() and tuple() Functions:
The functions list() and tuple() will return list and tuple versions of the values passed to

them.

[5] CO2 L2

tuple(['cat', 'dog', 5])

('cat', 'dog', 5)

list(('cat', 'dog', 5))

['cat', 'dog', 5]

list('hello')

['h', 'e', 'l', 'l', 'o']

3 (a) What is dictionary in Python? Explain get() and setdefault() methods with

example.

 Correct definition/description [2 marks]

 get() and setdefault() Explanation [3 marks]

The dictionary data type:

 A dictionary is a collection of many values. But unlike indexes for lists,
indexes for dictionaries can use many different data types, not just integers. Indexes
for dictionaries are called keys, and a key with its associated value is called a key-
value pair. In code, a dictionary is typed with braces, {}
e.g.
myCat = {'size': 'fat', 'color': 'gray', 'disposition': 'loud'}

This assigns a dictionary to the myCat variable. This dictionary’s keys are 'size',
'color', and 'disposition'. The values for these keys are 'fat', 'gray', and 'loud',
respectively. access these values through their keys:
myCat['size']
'fat'
'My cat has ' + myCat['color'] + ' fur.'
'My cat has gray fur.'

The get() Method
 Dictionaries have a get() method that takes two arguments: the key of the
value to retrieve and a fallback value to return if that key does not exist.
E.G.,
picnicItems = {'apples': 5, 'cups': 2}
'I am bringing ' + str(picnicItems.get('cups', 0)) + ' cups.'
'I am bringing 2 cups.'

'I am bringing ' + str(picnicItems.get('eggs', 0)) + ' eggs.'
'I am bringing 0 eggs.'
Because there is no 'eggs' key in the picnicItems dictionary, the default value 0 is
returned by the get() method.

The setdefault() Method
 The first argument passed to the method is the key to check for, and the
second argument is the value to set at that key if the key does not exist. If the key
does exist, the setdefault() method returns the key’s value.
spam = {'name': 'Tom', 'age': 5}
spam.setdefault('color', 'black')
print(spam)
{'color': 'black', 'age': 5, 'name': ‘Tom'}

spam.setdefault('color', 'white')
print(spam)
{'color': 'black', 'age': 5, 'name': 'Tom'}

 The first time setdefault() is called, the dictionary in spam changes to
{'color': 'black', 'age': 5, 'name': 'Tom'}. The method returns the value 'black' because
this is now the value set for the key 'color'. When spam.setdefault('color', 'white') is
called next, the value for that key is not changed to 'white' because spam already
has a key named 'color'.

[5] CO2 L2

 (b) Develop a program to print frequency of each digit with suitable message.

 Correct logic [3 marks]

 Correct syntax [2 marks]

str1=input(“Enter a multidigit number”)
for i in range(0,10):
 if str1.count(str(i))!=0:
 print(“Number of count of”,i,”is”,str1.count(str(i)))
output:
1256236

Number of count of 1 is 1
Number of count of 2 is 2
Number of count of 3 is 1
Number of count of 5 is 1
Number of count of 6 is 2

[5] CO2 L3

4 (a) Write a Python program to find the total size of the text files in the folder

‘C:\\Windows\\System32’

 Correct logic [3 marks]

 Correct syntax [2 marks]

totalSize = 0

for filename in os.listdir('C:\\Windows\\System32'):

 totalSize = totalSize + os.path.getsize(os.path.join('C:\\Windows\\System32',

filename))

print(totalSize)

output:

1117846456

[5] CO3 L3

 (b) Explain Join and split methods with Examples.

 Explanation (3 Marks)

 Example(each 1*2= 2 Marks)

 The join() method is useful when list of strings that need to be joined together
into a single string value. The join() method is called on a string, gets passed a list of
strings, and returns a string. The returned string is the concatenation of each string
in the passed-in list.
', '.join(['cats', 'rats', 'bats'])
'cats, rats, bats'

'ABC'.join(['My', 'name', 'is', 'Simon'])
'MyABCnameABCisABCSimon'
 join() is called on a string value and is passed a list value. The split()
method does the opposite: It’s called on a string value and returns a list of strings.
'My name is Simon'.split()
['My', 'name', 'is', 'Simon']

 Pass a delimiter string to the split() method to specify a different string to split
upon.
'MyABCnameABCisABCSimon'.split('ABC')
['My', 'name', 'is', 'Simon']

[5] CO3 L2

5(a) Explain the following with Example code snippet:

[5] CO3 L2

i) isalpha() ii) isalnum() iii) isdecimal() iv) isspace() v) istitle()

 Explanation with Example [1 *5 = 5 marks]

 These methods return a Boolean value that describes the nature of the
string. Here are some common isX string
methods:

isalpha() returns True if the string consists only of letters and is not blank.

‘Hello’.isalpha()
True
‘Hello’.isalpha()
False

isalnum() returns True if the string consists only of letters and numbers and is not

blank.
‘Hello123’.isalnum()
True
‘Hello 123’.isalnum()
False

isdecimal() returns True if the string consists only of numeric characters and is not

blank.
‘1234’.isdecimal()
True

isspace()returns True if the string consists only of spaces, tabs, and new- lines and

is not blank.
‘ ‘.isspace()
True

istitle() returns True if the string consists only of words that begin with an uppercase

letter followed by only lowercase letters.
‘Hello World’.istitle()
True

 (b) Develop a program to check whether the given number is Armstrong number or

not. [Hint: Armstrong number of three digits is an integer such that the sum of

the cubes of its digits is equal to the number itself.

 Correct logic [3 marks]

 Correct syntax [2 marks]

num = int(input("Enter a number: "))

sum = 0

temp = num

while temp > 0:

 digit = temp % 10

 sum += digit ** 3

 temp //= 10

if num == sum:

 print(num,"is an Armstrong number")

else:

 print(num,"is not an Armstrong number")
OUTPUT:

Enter a number: 153

153 is an Armstrong number

[5] CO3 L3

6 (a) Illustrate with Example function of Opening of a file, reading the contents of file,

writing to files.

 Explanation (3 Marks)

 Example(2 Marks)

Opening Files with the open() Function
 To open a file with the open() function, pass it a string path indicating the

file wants to open; it can be either an absolute or relative path. The open() function

returns a File object.

helloFile = open('C:\\Users\\your_home_folder\\hello.txt')

Read mode is the default mode for files opened in Python. We can explicitly specify

the mode by passing the string value 'r' as a second argument to open(). So open

('/Users/Al/hello.txt', 'r') and open('/Users/Al/hello.txt') do the same thing.

Reading the Contents of Files
 To read the entire contents of a file as a string value, use the File object’s

read() method.

helloContent = helloFile.read()

helloContent

'Hello, world!'

 Alternatively, use the readlines() method to get a list of string values from the file,

one string for each line of text.

Writing to Files
 Python allows us to write content to a file in a way similar to how the

print() function “writes” strings to the screen. We can’t write to a file that opened in

read mode, though.

Write mode will overwrite the existing file and start from scratch. Pass 'w' as the

second argument to open() to open the file in write mode. Append mode, on the other

hand, will append text to the end of the existing file. Pass 'a' as the second argument

to open() to open the file in append mode.

If the filename passed to open() does not exist, both write and append mode will

create a new, blank file. After reading or writing a file, call the close() method before

opening the file again.

baconFile = open('bacon.txt', 'w')

baconFile.write('Hello, world!\n')

13

baconFile.close()

baconFile = open('bacon.txt', 'a')

baconFile.write('Bacon is not a vegetable.')

25

baconFile.close()

baconFile = open('bacon.txt')

content = baconFile.read()

baconFile.close()

print(content)

Hello, world!

Bacon is not a vegetable.

[5] CO3 L3

 (b) Write a python code to determine whether a given string is Palindrome or

not?

 Correct logic [3 marks]

 Correct syntax [2 marks]

str1=input("Enter a string: ")
str2=str1[::-1]
if(str1.lower()==str2.lower()):
 print("Entered string is a palindrome")
else:
 print("Entered string is not a palindrome")
Output:
Enter a string: Madam
Entered string is a palindrome

[5] CO3 L3

7 (a) Explain the concept of file path. And also Explain the Difference between

absolute and relative path.

 Definition (3 Marks)

 Difference between absolute and relative path(2 marks)

 A file has two key properties: a filename and a path. The path specifies
the location of a file on the computer. For example, there is a file on my Windows
laptop with the filename project.docx in the path C:\Users\Al\Documents. The part of
the filename after the last period is called the file’s extension and a file’s type. The

filename project.docx is a Word document, and Users, Al, and Documents all refer
to folders (also called directories). Folders can contain files and other folders.
The C:\ part of the path is the root folder, which contains all other folders. On
Windows, the root folder is named C:\ and is also called the C: drive.

Absolute vs. Relative Paths

 There are two ways to specify a file path: An absolute path, which
always begins with the root folder. A relative path, which is relative to the program’s
current working Directory. There are also the dot (.) and dot-dot (..) folders. These
are not real folders but special names that can be used in a path. A single period
(“dot”) for a folder name is shorthand for “this directory.” Two periods (“dot-dot”)
means “the parent folder.”

[5] CO4 L2

 (b) Explain saving variables with Shelve Module.

 Explanation (3 Marks)

 with Example (2 Marks)

 Save variables in Python programs to binary shelf files using the shelve

module. This way, program can restore data to variables from the hard drive. The

shelve module will lets us add Save and Open features.

import shelve

shelfFile = shelve.open('mydata')

cats = ['Tom', 'Simon']

shelfFile['cats'] = cats

shelfFile.close()

[5] CO3 L2

To read and write data using the shelve module, first import shelve. Call

shelve.open() and pass it a filename, and then store the returned shelf value in a

variable. When program is done, call close() on the shelf value. Here, our shelf value

is stored in shelfFile.

After running the previous code, three new files in the current working directory:

mydata.bak, mydata.dat, and mydata.dir are created.

These binary files contain the data stored in shelf.

we can use the shelve module to later reopen and retrieve the data from

these shelf files.

shelfFile = shelve.open('mydata')

shelfFile['cats']

['Tom', 'Simon']

shelfFile.close()

Just like dictionaries, shelf values have keys() and values() methods that will return

list-like values of the keys and values in the shelf. Since these methods return list-like

values instead of true lists, pass them to the list() function to get them in list form.

shelfFile = shelve.open('mydata')

list(shelfFile.keys())

['cats']

list(shelfFile.values())

[['Tom', 'Simon']]

shelfFile.close()

CI CCI HOD

