

Roll

No.

Internal Assessment Test 3 – Jan. 2024

Sub: Introduction to Python Programming
Sub

Code:
BPLCK105B

Branch

:

Chemistry

Cycle

Date: 5-1-2024 Duration: 90 min’s
Max

Marks:
50 Sem/Sec I / Chemistry Cycle OBE

Answer any FIVE FULL QUESTIONS
MARK

S

CO RB

T
 1 (a) Explain the following file operations in Python with suitable example:

i) Copying files and folders

ii) Moving files and folders

iii) Permanently deleting files and folders.

[6] L2 CO3

 (b) Develop a program to backing Up a given Folder (Folder in a current working

Directory) into a ZIP File by using relevant modules and suitable methods.

[4] L3 CO3

2 (a) Describe logging methods used in python to categorize log messages by importance [5] L2 CO4

 (b) Explain five buttons available in Debug control window. [5] L2 CO4

3 (a) Write a program to implement the following object diagram and its functionality as

shown. Initialize an attribute through a constructor and print the same

[5] L3 CO4

 (b) Explain _ _init_ _ () and _ _str_ _ () method in detail. [5] L2 CO4

4 (a) Define Pure function and Modifier function. Illustrate with an example Python

program.

[5] L3 CO4

 (b) Define a function which takes two objects representing complex numbers and returns

a new complex number with an addition of two complex numbers. Define a suitable

class Complex' to represent the complex number. Develop a program to read N

complex numbers and to compute the addition of N complex numbers.

[5] L3 CO4

5(a) What is a class? How to define a class in python? How to initiate a class and how

the class members are accessed?

[5] L2 CO4

 (b) Discuss Operator overloading with an example program [5] L2 CO4

6 (a) Explain Assertions with an example program of how assertions used in traffic

light simulation

[5] L2 CO3

 (b) List out the benefits of compressing files? Also explain reading of a zip file [5] L2 CO3

7 (a) Explain the concept of copy.copy() and copy.deepcopy() module in class with

an example object diagram.

[5] L2 CO4

 (b) Briefly explain the printing of objects with examples. [5] L2 CO4

CI CCI HOD

Q.1.a

i) Copying files and folders
[Copying Files syntax and example each 1/2 mark, Copying folders syntax and example each 1/2 mark]

 The shutil (or shell utilities) module has functions to let you copy, move, rename, and delete

files in your Python programs. To use the shutil functions, you will first need to use import shutil.

The shutil module provides functions for copying files, as well as entire folders. Calling shutil.copy(source,

destination) will copy the file at the path source to the folder at the path destination. (Both source and

destination are strings.) If destination is a filename, it will be used

as the new name of the copied file. This function returns a string of the path of the copied file.

While shutil.copy() will copy a single file, shutil.copytree() will copy an entire folder and every folder and

file contained in it. Calling shutil.copytree(source ,destination) will copy the folder at the path source, along

with all of its files and subfolders, to the folder at the path destination.

>>> import shutil, os

>>> os.chdir('C:\\')

>>> shutil.copy('C:\\spam.txt', 'C:\\delicious')

'C:\\delicious\\spam.txt'

>>> shutil.copy('eggs.txt', 'C:\\delicious\\eggs2.txt')

'C:\\delicious\\eggs2.txt'

>>> shutil.copytree('C:\\bacon', 'C:\\bacon_backup')

'C:\\bacon_backup'

ii) Moving file & Folders

[Moving file syntax and example each 1/2 mark, Moving folder syntax and example each 1/2 mark

 Calling shutil.move(source, destination) will move the file or folder at the path source to the path

destination and will return a string of the absolute path of the new location. If destination points to a folder,

the source file gets moved into destination and keeps its current filename.

>>>import shutil

>>>shutil.move('C:\\bacon.txt', 'C:\\eggs')

'C:\\eggs\\bacon.txt'

iii) Permanently deleting file & Folders

[Permanently delete file syntax and example each 1/2 mark, Permanently delete file syntax and example

each 1/2 mark]

You can delete a single file or a single empty folder with functions in the os module, whereas to

delete a folder and all of its contents, you use the shutil module.

• Calling os.unlink(path) will delete the file at path.

• Calling os.rmdir(path) will delete the folder at path. This folder must be empty of any files or folders.

• Calling shutil.rmtree(path) will remove the folder at path, and all files and folders it contains will also be

deleted.

Code:

import os

for filename in os.listdir():

if filename.endswith('.txt'):

os.unlink(filename)

Q. 1.b

[importing file 1 mark, code 3 marks]

Q.2.a

[each level 1 mark]

Logging levels provide a way to categorize your log messages by importance. There are five logging

levels, from least to most important. Messages can be logged at each level using a different logging function.

The benefit of logging levels is that you can change what priority of logging message you want to see. Passing

logging.DEBUG to the basicConfig() function’s level keyword argument will show messages from all the

logging levels (DEBUG being the lowest level). But after developing your program some more, you may be

interested only in errors. In that case, you can set basicConfig()’s level argument to logging.ERROR. This

will show only ERROR and CRITICAL messages and skip the DEBUG, INFO, and WARNING messages

Q.2.b

[Each step 1 mark]

The program will stay paused until you press one of the five buttons in the Debug Control

window: Go, Step, Over, Out, or Quit.

Go Clicking the Go button will cause the program to execute normally until it terminates or reaches a

breakpoint. If you are done debugging and want the program to continue normally, click the Go button.

Step Clicking the Step button will cause the debugger to execute the next line of code and then pause again.

The Debug Control window’s list of global and local variables will be updated if their values change. If the

next line of code is a function call, the debugger will “step into” that function and jump to the first line of code

of that function.

Over Clicking the Over button will execute the next line of code, similar to the Step button. However, if the

next line of code is a function call, the Over button will “step over” the code in the function. The function’s

code will be executed at full speed, and the debugger will pause as soon as the function call returns.

Out Clicking the Out button will cause the debugger to execute lines of code at full speed until it returns from

the current function. If you have stepped into a function call with the Step button and now simply want to

keep executing instructions until you get back out, click the Out button to “step out” of the current function

call.

Quit If you want to stop debugging entirely and not bother to continue executing the rest of the program, click

the Quit button. The Quit button will immediately terminate the program. If you want to run your program

normally again, select Debug4Debugger again to disable the debugger.

Q.3.a

[program 3 marks, initialization 1 mark, print 1 mark]

Q.3.b

[init and str method each 21/2 marks]

The init method (“initialization”) is a special method that gets invoked when an object

is instantiated. Its full name is _ _init_ _ (two underscore characters, followed by init, and

then two more underscores).

 Hour: 0

 Minute: 0

 Seconds: 0

 Hour: 10

 Minute: 0

 Seconds: 0

 Hour: 10

 Minute: 20

 Seconds: 0

 Hour: 10

 Minute: 20

 Seconds: 30

_ _str_ _ () method
__str__ is a special method, like __init__, that is supposed to return a string representation of

an object. When you print an object, Python invokes the str method

 00:00:00

 10:20:00

Q.4.a

[Pure function syntax and example 21/2 marks, Modifier function syntax and example 21/2 marks]

PURE FUNCTION

The function that creates a new Time object, initializes its attributes with new values and returns a

reference to the new object. This is called a pure function because it does not modify any of the objects

passed to it as arguments and it has no effect, like displaying a value or getting user input, other than

returning a value.

Hour: 11

Minute: 20

Seconds: 0

9

MODIFIER FUNCTION

Sometimes it is useful for a function to modify the objects or instances it gets as parameters. In that

case, the changes are visible to the caller. Functions that work this way are called modifiers. increment()

function adds a given number of seconds to a Time object or instance which is visible to the called function.

 Hour: 11

 Minute: 8

 Seconds: 20

 11

Q.4.b

[complex output 2 mark, real and imaginary part each 1 mark, sum 1 mark]

Q.5.a

[class definition 1 mark, initialization 2 marks, accessing class members 2 marks]

A programmer-defined type is called a class. A class definition looks like this:

class Point:

 """Represents a point in 2-D space."""

The header indicates that the new class is called Point. The body is a docstring that explains what the class is

for. You can define variables and methods inside a class definition.

Defining a class named Point creates a class object.

>>> Point

<class __main__.Point>

Because Point is defined at the top level, its “full name” is __main__.Point. The class object is like a

factory for creating objects. To create a Point, you call Point as if it were a function.

>>> blank = Point()

>>> blank

 The return value is a reference to a Point object, which we assign to blank. Creating a new object

is called instantiation, and the object is an instance of the class. When you print an instance, Python tells

you what class it belongs to and where it is stored in memory (the prefix 0x means that the following

number is in hexadecimal). Every object is an instance of some class, so “object” and “instance” are

interchangeable.

You can assign values to an instance using dot notation:

>>> blank.x = 3.0

>>> blank.y = 4.0

though, we are assigning values to named elements of an object. These elements are called attributes. A state

diagram that shows an object and its attributes is called an object diagram.

The variable blank refers to a Point object, which contains two attributes. Each attribute refers to a floating-

point number. You can read the value of an attribute using the same syntax

Q.5.b

[Explanation 2 marks, example 3 marks]

Changing the behavior of an operator so that it works with programmer-defined types is called operator

overloading. For every operator in Python there is a corresponding special method, like __add__.When you

apply the + operator to Time objects, Python invokes __add__. When you print the result, Python invokes

__str__.

By defining other special methods, you can specify the behavior of operators on programmer-defined

types. For example, if you define a method named __add__ for the Time class, you can use the + operator on

Time objects.

11:20:20

Q.6.a

[Assertion explanation 1 mark, traffic signal example 4 marks]

Assertions
An assertion is a sanity check to make sure your code isn’t doing something obviously wrong.

These sanity checks are performed by assert statements. If the sanity check fails, then an Assertion

Error exception is raised. Assertions are for programmer errors, not user errors.

In code, an assert statement consists of the following:

 The assert keyword

 A condition (that is, an expression that evaluates to True or False)

 A comma

Using an Assertion in a Traffic Light Simulation

Say you’re building a traffic light simulation program. The data structure representing the

stoplights at an intersection is a dictionary keys 'ns' and 'ew', for the stoplights facing north-

south and east-west, respectively. The values at these keys will be one of the strings 'green',

'yellow', or 'red'. The code would look something like this:

a = {'ns': 'green', 'ew': 'red'}

def switchLights(stoplight):

for key in stoplight.keys():

if stoplight[key] == 'green':

stoplight[key] = 'yellow'

elif stoplight[key] == 'yellow':

stoplight[key] = 'red'

elif stoplight[key] == 'red':

stoplight[key] = 'green'

switchLights(a)

To start the project, you want to write a switchLights() function, which will take an

intersection dictionary as an argument and switch the lights. At first, you might think that

switchLights() should simply switch each light to the next color in the sequence: Any 'green' values

should change to 'yellow', 'yellow' values should change to 'red', and 'red' values should change to

'green'

You may already see the problem with this code, but let’s pretend you wrote the rest of the

simulation code, thousands of lines long, without noticing it. When you finally do run the simulation,

the program doesn’t crash—but your virtual cars do! Since you’ve already written the rest of the

program, you have no idea where the bug could be. Maybe it’s in the code simulating the cars or in

the code simulating the virtual drivers. It could take hours to trace the bug back to the switchLights()

function. But if while writing switchLights() you had added an assertion to check that at least one of

the lights is always red, you might have included the following at the bottom of the function

assert 'red' in stoplight.values(), 'Neither light is red! '

By adding this assert statement, your program would crash with this error message

Q.6.b

[Each benefit 1 mark, reading ZIP file 3 marks]

In Python Zipfile is an archive file format and a compression standard; it is a single file that holds compressed

files. Compressing a file reduces its size, which is useful when transferring it over the Internet. And since a

ZIP file can also contain multiple files and subfolders, it’s a handy way to package several files into one. This

single file, called an archive file, can then be, say, attached to an email.

Python programs can both create and open (or extract) ZIP files using functions in the zipfile

module. Python Zipfile is an ideal way to group similar files and compress large files to reduce their size.

Benefits of Python Zipfiles

Bunching files into zips offer the following advantages:

1. It reduces storage requirements

Since ZIP files use compression, they can hold much more for the same amount of storage

2. It improves transfer speed over standard connections

Since it is just one file holding less storage, it transfers faster

Reading ZIP Files

To read the contents of a ZIP file, first you must create a ZipFile object (note the capital letters Z and F). To

create a ZipFile object, call the zipfile.ZipFile() function, passing it a string of the .zip file’s filename. Note

that zipfile is the name of the Python module, and ZipFile() is the name of the function.

A ZipFile object has a namelist() method that returns a list of strings for all the files and folders contained in

the ZIP file. These strings can be passed to the getinfo() ZipFile method to return a ZipInfo object about that

particular file.

ZipInfo objects have their own attributes, such as file_size and compress_size in bytes, which hold integers

of the original file size and compressed file size, respectively. While a ZipFile object represents an entire

archive file, a ZipInfo object holds useful information about a single file in the archive. The command at u

calculates how efficiently example.zip is compressed by dividing the original file size by the compressed file

size and prints this information using a string formatted with %s.

Q.7.a

[copy & deep copy each 2 1/2 marks]

copy.copy():
The copy module contains a function called copy that can duplicate any object: If you use copy.copy

to duplicate a Rectangle, you will find that it copies the Rectangle object but not the embedded Point. This

operation is called a shallow copy because it copies the object and any references it contains, but not the

embedded objects.

copy.deepcopy():

The copy module provides a method named deepcopy that copies not only the object but also the

objects it refers to, and the objects they refer to, and so on. This operation is called a deep copy.

Q.7.b

[Explanation 1 mark, code 3 marks, output 1 mark]

An Object is an instance of a Class. A class is like a blueprint while an instance is a copy of the class with

actual values. When an object of a class is created, the class is said to be instantiated. All the instances share

the attributes and the behavior of the class. But the values of those attributes, i.e. the state are unique for each

object. A single class may have any number of

instances.

Printing objects give us information about the objects we are working with. In Python, this can be

achieved by using __repr__ or __str__ methods. __repr__ is used if we need a detailed information for

debugging while __str__ is used to print a string version for the users.

Code:-

class Test: # Defining a class

def __init__(self, a, b):

self.a = a

self.b = b

def __repr__(self):

return "Test a:% s b:% s" % (self.a, self.b)

def __str__(self):

return "From str method of Test: a is % s, b is % s" % (self.a, self.b)

t = Test(1234, 5678)

print(t) # This calls __str__()

print([t]) # This calls __repr__()

Output:-

From str method of Test: a is 1234, b is 5678

[Test a:1234 b:5678]

	PURE FUNCTION
	The function that creates a new Time object, initializes its attributes with new values and returns a reference to the new object. This is called a pure function because it does not modify any of the objects passed to it as arguments and it has no eff...

	MODIFIER FUNCTION
	Sometimes it is useful for a function to modify the objects or instances it gets as parameters. In that case, the changes are visible to the caller. Functions that work this way are called modifiers. increment() function adds a given number of seconds...

