USN										
-----	--	--	--	--	--	--	--	--	--	--

Internal Assessment Test 1 – December 2023

Sub:	ub: DSA				Sub Code:	BCS304	04 Branch: AIDS CSE		S & (AIDS)		
Date:	21/12/23 Duration: 90 Max Marks: 50 Sem/Sec: III - A, B						A, B & C	& C		OBE	
Answer any FIVE FULL Questions									MARKS		RBT
1	String: abcd Pattern Strin Answer: Knuth-Morr all occurrent pattern stri The basic id some match window. We that we know Unlike Bru compare all next charace know will a It uses a pre characters co How to use be skipped) ⁶ We start cor We keep ma pat[j] and st When we see We know th 0 and increm We also know pat[0j-1] From above failure[j-1] of anyway mat void fail (co int int fail	abcabcabbal abcabcabbal abcabcabbal ag:abcabbab abcabbab abcabbab abcabbab abcabbab abcabbab abcabbab abcabbab age a national actional characters actional characters actional characters actional characters actional characters actional characters actional characters actional characters at characters	<pre>bcbcabc c IP) string m n P in S. In n array of le MP's algorith ady know so tage of this i ay match. ive algorith s at each shi natched. Th ch. ble called "I while matchi lecide next p pat[j] with j acters str[i] a tching. ch s pat[0j-1] when there i pve definition proper pref we can cond ith str[i-ji int failure (pat); .; j++) ure[j-1];</pre>	positions (or to = 0 with char- and pat[j] and match with str s a match). n) that failure ix and suffix. clude that we of -1] because w []) a b -1 -1 pat[i+1]) && pat[i+1]) &&	thm ru hm, a culat ever w racters o avoid s slide fot ma or "Fa o know acters keep i r[i-j [j-1] i do not e know c -1	uns in $O(m+preprocess)ed.e detect a ms in the textd matching tothe patternfrom lps[] totch a charaailure Tablew a numberof current wincrementini-1] (Note tos count of cmeed to maw that thesea b b0 1 -1$	sing is done nismatch (af of the next the characte n by one an o decide the o d character o f o haracters o f o haracters o f o horacters o f o horacters o f	e in ter rs d e e e rs to ext. ile vith	[10]	1	L3

	1	1			
		}			
		abcdabcabbabcbcabc abcabbabc			
		abcabbabc abcabbabc			
		Convert the infix expression $a/b - c + d * e - a * c$ into postfix expression. Write a function to evaluate that postfix expression and trace that for given data a=6, b=3, c = 1, d = 2, e =4.			
2		Answer:	[10]	2	L3
2		Infix to postfix : $ab/c-de^*+ac^*-$ (With tracing)	[10]	2	Lo
		POSTFIX EVALUATION : $63/1-24*+61*-=3$ (with tracing and function)			
		What is structure? How it is different from array? Explain different types of structure declaration with examples and give difference between Union and Structure.			
		Answer:			
		Data are a collection of facts or simply values or sets of values. Data structure is representation of the logical or mathematical model of a particular organization of data.			
		We can declare a structure using "struct" keyword. A structure must be declared first before using it just like all other data type. Structure can be declared by two ways.			
		Tagged Declaration Typedef Declaration Typedef:			
3	a	typedef_struct { data-type var-name1; data-type var-name2;	[5]	1	L2
		: data-type var-nameN; } <i>identifier</i> , // global declaration			
		Tagged: struct <i>tag_name</i> {			
		data-type var-name1; data-type var-name2;			
		data-type var-nameN; };			
	<u> </u>				

			STRUCTURE		UNION			
		Keyword	The keyword struct is used to define a structu	ire	The keyword union is used to de			
		Size	When a variable is associated with a structure compiler allocates the memory for each memb size of structure is greater than or equal to the sizes of its members.	ber. The	when a variable is associated wit allocates the memory by conside largest memory. So, size of unior of largest member.			
		Memory	Each member within a structure is assigned un storage area of location.	nique	Memory allocated is shared by in union.			
		Value Altering	Altering the value of a member will not affect o members of the structure.	other	Altering the value of any of the m member values.			
		Accessing members	Individual member can be accessed at a time.		Only one member can be access			
		Initialization of Members	Several members of a structure can initialize a	atonce.	Only the first member of a union			
		Explain dyn	amic memory allocation functions in	n details				
	b	•	and examples			[5]	1	L2
		-	Polynomial addition is performed	with algori	thm?			
		$P_1(x) = 4x^3 + 6x^2 + 7x + 9$ $P_2(x) = 5x^4 + 8x^3 + 2x + 3$						
4		Answer:		[10]	1	L3		
		P(x) = functio	5x ⁴ +12x ³ +6x ² +9x+13 wit n	th algo	orithm/			
		Explain Sp	arse matrices. Implement the fast tra	anspose alg	gorithm for it.			
		0 9 0 0 0 6 0 0 0 0 0 0 0 0 6	0 0 4 0 0 0 0 0 1 0 5 0 0 1 0 0 0 0 3 0 0 0 0 0 0					
		Answer: Sparse matr	v.	Fact transn	0000			
		Sparse matr		Fast transp				
5			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[10]	1	L3
		void transpo {	se(int trip1[][3],int trip2[][3])					

```
int x,y,z,n;
        trip2[0][0] = trip1[0][1];
        trip2[0][1] = trip1[0][0];
        trip2[0][2] = trip1[0][2];
        z=1;
        n=trip1[0][2];
        for(x=0;x<trip1[0][1];x++)
              for(y=1;y<=n;y++)
                /*if a column number of current triple==x
                then insert the current triple in b2 */
                if(x = trip1[y][1])
                {
                        trip2[z][0]=x;
                        trip2[z][1]=trip1[y][0];
                        trip2[z][2]=trip1[y][2];
                        z++;
               }
      Define stack. Explain stacks operations using dynamic arrays. Implement the
      operations of stack using arrays
      Answer:
       A stack is an ordered list in which the insertion (also called push and add) and
      deletion (also called pop and remove) are made at one end called the top.
      Given a stack S=(a0, ..., an-1), we say that a0 is the bottom element, an-1 is the top
     element and ai is on top of ai-1 for 0 < I < n.
     Stack is also known as a Last-In-First-Out (LIFO) list.
      int capacity=1; // capacity of stack. Initialized to 1
      int top = -1;
      int *stack;
     int isEmpty()
            if (top < 0) return 1;
            else return 0;
                                                                                     [10]
                                                                                              2
                                                                                                   L3
6
      int isFull()
            if (top >= capacity-1) return 1;
            else return 0;
      void push(int item)
            if (top \ge capacity -1)
             {
                   // double the capacity and reallocate memory
                   capacity = capacity * 2;
                   stack=(int *) realloc(stack,
      capacity*sizeof(int));
             }
            // increment top and then store the item.
            stack[++top] = item;
```

```
int pop()
{
      int item;
      if (top < 0)
            printf("Stack is Empty. Pop Failed\n");
      else
            \ensuremath{{\prime}}\xspace // get the item to return and then decrement top.
            return stack[top--];
int main()
      int item, option=1;
      stack = (int *) malloc( sizeof (int)); // Allocate memory for
1 element
      while (option !=0)
      {
            printf("Enter option (1: push, 2: pop, 0:Exit):");
            scanf("%d", &option);
            switch (option)
            {
                  case 1: printf("Enter item to be pushed:");
                           scanf("%d", &item);
                           push(item);
                           break;
                  case 2: item = pop();
                           printf("Poped %d\n", item);
                           break;
                  case 0: printf("Exiting\n");
                           break;
                  default: printf("Invalid option. Retry\n");
            }
      }
```

CI	CCI	HoD
	All the Best	
	All the Best	
