

USN

Internal Assessment Test 1 – December 2023

Sub: DSA
Sub

Code:
BCS304 Branch:

AIDS &

CSE(AIDS)

Date: 21/12/23 Duration:
90

minutes
Max Marks: 50 Sem/Sec: III -A, B & C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1

Illustrate KMP algorithm to find a string pattern with an example.

String: abcdabcabcabbabcbcabc

Pattern String:abcabbabc

Answer:

Knuth-Morris-Pratt (KMP) string matching algorithm runs in O(m+n) time to find

all occurrences of pattern P in S. In KMP algorithm, a preprocessing is done in

pattern string P and an array of length m is calculated.
The basic idea behind KMP’s algorithm is: whenever we detect a mismatch (after

some matches), we already know some of the characters in the text of the next

window. We take advantage of this information to avoid matching the characters

that we know will anyway match.

Unlike Brute-Force/Naïve algorithm, where we slide the pattern by one and

compare all characters at each shift, we use a value from lps[] to decide the

next characters to be matched. The idea is to not match a character that we

know will anyway match.

It uses a preprocessed table called "Prefix Table" or “Failure Table” to skip

characters comparison while matching.

How to use failure[] to decide next positions (or to know a number of characters to

be skipped)?

We start comparison of pat[j] with j = 0 with characters of current window of text.

We keep matching characters str[i] and pat[j] and keep incrementing i and j while

pat[j] and str[i] keep matching.

When we see a mismatch

We know that characters pat[0..j-1] match with str[i-j…i-1] (Note that j starts with

0 and increment it only when there is a match).

We also know (from above definition) that failure[j-1] is count of characters of

pat[0…j-1] that are both proper prefix and suffix.

From above two points, we can conclude that we do not need to match these

failure[j-1] characters with str[i-j…i-1] because we know that these characters will

anyway match.
void fail(char *pat, int failure[])

{
a b c a b b a b c

-1 -1 -1 0 1 -1 0 1 2 int i,j;

 int n = strlen(pat);

 failure[0] = -1;

 for (j=1; j<n; j++)

 {

 i = failure[j-1];

 while ((pat[j] != pat[i+1]) && (i>= 0))

 i= failure[i];

 if (pat[j] == pat[i+1])

 failure[j] = i+1;

 else

 failure[j] = -1;

[10] 1 L3

 }

}

abcdabcabcabbabcbcabc

abcabbabc
 abcabbabc

 abcabbabc

2

Convert the infix expression a/b – c+ d * e – a * c into postfix expression. Write a

function to evaluate that postfix expression and trace that for given data a=6, b=3, c

= 1, d = 2, e =4.

Answer:

 Infix to postfix : ab/c-de*+ac*- (With tracing)

 POSTFIX EVALUATION : 63/1-24*+61*- = 3 (with tracing and function)

[10] 2 L3

3 a

What is structure? How it is different from array? Explain different types of structure

declaration with examples and give difference between Union and Structure.

Answer:

Data are a collection of facts or simply values or sets of values.

Data structure is representation of the logical or mathematical model of a particular

organization of data.

We can declare a structure using “struct” keyword. A structure must be declared

first before using it just like all other data type. Structure can be declared by two

ways.

Tagged Declaration

Typedef Declaration

Typedef:
typedef struct
{
data-type var-name1;
data-type var-name2;
:
data-type var-nameN;

}identifier; // global declaration

Tagged:
struct tag_name
{
data-type var-name1;
data-type var-name2;
:
data-type var-nameN;
};

[5] 1 L2

b

Explain dynamic memory allocation functions in details

Answer:

Malloc

Calloc

Realloc

Free

With syntax and examples

[5] 1 L2

4

Explain how Polynomial addition is performed with algorithm?

P1(x) = 4x3+6x2+7x+9

P2(x) = 5x4+8x3+2x+3

Answer:

P(x) = 5x4+12x3+6x2+9x+13 with algorithm/

function

[10] 1 L3

5

Explain Sparse matrices. Implement the fast transpose algorithm for it.

Answer:

Sparse matrix: Fast transpose:

5 8 8

0 1 9

0 5 4

1 2 6

1 6 1

2 3 5

2 6 1

3 6 3

4 2 6

5 8 8

1 0 9

2 1 6

2 4 6

3 2 5

5 0 4

6 1 1

6 2 1

6 3 3

void transpose(int trip1[][3],int trip2[][3])

{

[10] 1 L3

 int x,y,z,n;

 trip2[0][0] = trip1[0][1];

 trip2[0][1] = trip1[0][0];

 trip2[0][2] = trip1[0][2];

 z=1;

 n=trip1[0][2];

 for(x=0;x<trip1[0][1];x++)

 for(y=1;y<=n;y++)

 /*if a column number of current triple==x

 then insert the current triple in b2 */

 if(x==trip1[y][1])

 {

 trip2[z][0]=x;

 trip2[z][1]=trip1[y][0];

 trip2[z][2]=trip1[y][2];

 z++;

 }

}

6

Define stack. Explain stacks operations using dynamic arrays. Implement the

operations of stack using arrays

Answer:

 A stack is an ordered list in which the insertion (also called push and add) and

deletion (also called pop and remove) are made at one end called the top.

Given a stack S=(a0, …, an-1), we say that a0 is the bottom element, an-1 is the top

element and ai is on top of ai-1 for 0 < I < n.

Stack is also known as a Last-In-First-Out (LIFO) list.

int capacity=1; // capacity of stack. Initialized to 1

int top = -1;

int *stack;

int isEmpty()

{

 if (top < 0) return 1;

 else return 0;

}

int isFull()

{

 if (top >= capacity-1) return 1;

 else return 0;

}

void push(int item)

{

 if (top >= capacity -1)

 {

// double the capacity and reallocate memory

 capacity = capacity * 2;

 stack=(int *) realloc(stack,

capacity*sizeof(int));

 }

 // increment top and then store the item.

 stack[++top] = item;

}

[10] 2 L3

CI CCI HoD

--All the Best--

int pop()

{

 int item;

 if (top < 0)

 printf("Stack is Empty. Pop Failed\n");

 else

 // get the item to return and then decrement top.

 return stack[top--];

}

int main()

{

 int item, option=1;

 stack = (int *) malloc(sizeof (int)); // Allocate memory for

1 element

 while (option !=0)

 {

 printf("Enter option (1: push, 2: pop, 0:Exit):");

 scanf("%d", &option);

 switch (option)

 {

 case 1: printf("Enter item to be pushed:");

 scanf("%d", &item);

 push(item);

 break;

 case 2: item = pop();

 printf("Poped %d\n", item);

 break;

 case 0: printf("Exiting\n");

 break;

 default: printf("Invalid option. Retry\n");

 }

 }

}

