IAT 2 Answer Sheet

Q.1 Design a full adder by constructing the truth table (2) and simplify the output equations
(2) (K-map (3) & Verilog module (3))

Ans. A full adder is a combinational circuit that forms the arithmetic sum of three bits. It consists
of three inputs and two outputs. We assign symbols x, y and z to the three inputs and S (for sum)
and C (for carry) to the outputs. The C output is 1 only when two or three inputs are 1. The S
output represents the least significant bit of the sum. The simplified expressions
are

S=x’y’z+x’yz’ +xy’z’ +xyz and C=xy+xz+yz

Full Adder
X y z C 5
0 0 0 0 0 ¥ j}
0 0 1 0 1 ’ x :Di
0 1 0 0 1 ¥
0 1 1 1 0
1 0 1 1 0 x z
1 1 0 1 0 %
1 1 1 1 1 ¥ Dﬁ
Vv y
y ' vz
x 00 01 11 10 * 00 01 11 10
0 I 1 ’ 1 0 ” I 1
{1 1 | x { 1 1 1 1
(a)S=x"yz+x'yz" +xy'z' +xyz (b)C=xy+xz +yz

K-Maps for full adder
Verilog Module:
module FullAdder(a,b,c,sum,carry);
input a,b,c;
output sum,carry;
assign sum=a"b”\c;
assign carry=(a&b)|(b&c)|(c&a);

endmodule

Q.2 Explain the D and JK flip flop with logic diagram, function table and equation.
Ans. D flip flop (2+3)

SR flip-flop
(b) D flip-flop using NAND gates

= 0 =
=1 i & o 0
CP ‘_1>) - 1 1
¥ T 0 X Q,
(a) Logic symbol (b) Truth table of D flip-flop

JK flip flop (2+3)

Qnﬂ

Q,, (No change)

J UK

o Bos

0 B3 0 (Reset)

11 oW 1 (Se)
1 Q, (Toggle)

Q.3 a. What is Encoder (1)? Write the compressed truth table (1) for a 4 to 2 line priority
encoder with a valid output where the highest priority is given to highest bit position and
simplify the same using K-map (1). Design the logic circuit as well (2).

Ans. An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder
has 2*n (or fewer) input lines and n output lines. The output lines, generate the binary code
corresponding to the input value.

The truth table of a four-input priority encoder is given. In addition to the two outputs x and y. the
circuit has a third output designated by V; this is a valid bit indicator that is set to 1 when one or
more inputs are equal to 1. If all inputs are 0, there is no valid input and V is equal to 0. The other
two outputs are not inspected when V equals 0 and are specified as don’t-care conditions.

Truth Table of a Priority Encoder

Inputs Outputs
Do D] Dz D; X Yy |4
0 0 0 0 X X 0
1 0 0 0 0 0 1
X 1 0 0 0 1 1
X X 1 0 1 0 1
X X X 1 1 1 1
D, Dy
DsD; _ D,D; P
DyD, 00 o1 11 10 Dyn 0 0l 11 10
n, my iy iy "y my "y ny
00| x 1 1 1 0| x 1 1
my ms niy mg my ms my g
01 1 1 1 o1 1 1 1
D, D,
iy iy Hiys iy, iy ey s Hiyy
11 1 1 1 1| 1 1 1
Dy e o i Ty Dy ; o I m
10 1 1 X 10 1 1
Pe—— —
Dy D;
x=Dy+ D y=Dy+ DD

The maps for simplifying outputs x and y. The minterms for the two functions are derived.
x=D2+ D3
y=D3+DI D2
V=D0+D1+D2+D3

D;
D, %:D_::Di v
D

T

Four-input priority encoder

b. Implement the function using 8:1 MUX, F(a,b,c,d) = £m(0,1,3,4,7,10,11,14,15) (2+3)

Ans.
Page No.: TR
Page No.
............... A B ; 2z 2
[} Rolon0]S | —
0 b s . : ,
) el b e e c -
o (o} 1 ! | & X
@. | [o] [e) 1 - Al
2 ! 1 o 0 1]
] | \ | ! = i =
' e : . . I o Z
| o o { 0 ;
\ [9] [}) |
F=1 ° .
\ D {] !
[1 (7] o = : -
i I) * e 0 e % ¢
l { [(o] [i F . i ¥
[{ ,v { | | A ¥
| .
£l

Q.4 a. With logic diagram (2) and truth table (3) explain the operation of a SR latch.

Ans. An SR latch with a control input consists of the basic SR latch and two additional NAND
gates. The control input En acts as an enable signal for the other two inputs. The outputs of the
NAND gates stay at the logic-1 level as long as the enable signal remains at 0. This is the quiescent
condition for the SR latch. When the enable input goes to 1, information from the S or R input is
allowed to affect the latch.

—
D

—— 0O

Next state of O

0 X X | Nochange
0 0 | Nochange

En)
1 0 1 O = 0; reset state
1
1

1 0 | Q=1,;setstate
1 1 Indeterminate

TAY

(a) Logic diagram (b) Function table

b. Analyze Big —endian (2) and little —endian (2) methods of byte addressing with Example
(D).

Ans. Big-Endian: lower byte addresses are used for the most significant bytes of the word.

Little-Endian: opposite ordering. Lower byte addresses are used for the less significant bytes of
the word.

In both cases, byte-addresses 0, 4, 8.....are taken as the addresses of successive words in the
memory.

Word
address Byte address Byte address
0 0 | 2 3 0 3 2 | 0
4 4 5 & 7 4 7 f 5 4
ot 4 | 2*ia| '3 | o [0ty e O B Bl W [o & [

(a) Big-endian assignment (b) Little-endian assignment
Example: Consider a 32-bit integer (in hex): 0 x 12345678 which consists of 4 bytes: 12, 34, 56,
and78.

* Hence this integer will occupy 4 bytes in memory.

» Assume, we store it at memory address starting 1000.

On little-endian, memory will look like On big-endian, memory will look like
Address | Value Address | Value
1000 12
1000 78 1661 =
1001 36 .)
1002 34 1002 50
1003 12 1003 78

Q.5 a. For the following processor, obtain the performance
Clock rate = 800MHz
No. of instructions executed = 1000
Average no. of steps needed/machine instruction = 20
Ans. (2+3)
v

¥ X S £
T= T: (1000%20)/800 * 10°=25 micro sec or 25*10° sec

-

b. Explain operational Concepts of a computer.
Ans. An Instruction consists of 2parts, 1) Operation code (Op code) and 2) Operands.

* The data/ operands are stored in memory. The individual instruction is brought from the memory
to the processor. Then, the processor performs the specified operation. Let us see a typical
instruction

ADD LOCA, RO
 The same instruction can be realized using 2instructions as: Load LOCA, R1 Add R1, R0
The following are the steps to execute the instruction:
Stepl: Fetch the instruction from main-memory into the processor.
Step2: Fetch the operand at location LOCA from main-memory into the register R1.
Step3: Add the content of Register R1 and the contents of register RO.
Step4: Store the result in RO.

Q.6 a. What is an Addressing Modes (1) and explain any Four (4).

Ans. The term addressing modes refers to how the operand of an instruction is specified.
Information contained in the instruction code is the value of the operand or the address of the
operand. Following are the main addressing modes that are used on various platforms and
architectures.

1. Register Addressing Mode

2. Immediate Addressing Mode

3. Direct (or Absolute) Addressing Mode
4. Indirect Addressing Mode

5. Index Addressing Mode

6. Relative Addressing Mode
7. Auto increment Addressing Mode
8. Auto decrement Addressing Mode.

Register Addressing Mode

» The operand is the content of a processor register. Register name 1s
gpecified m the instruction.

+ Effective Address of the Operand: Register name specified in the instruction
* Operator, operand

* Move R1, R2

» ADDRO, R1

Direct(or Absolute) Addressing Mode

* The operand 15 a Memory location. The address of the memory location 1s
given in the instruction explicitly.

» Effective Address of the Operand: Address of the memory location given
directly in the instruction

* Mov LOCR1
» ADD NUMI1, RO

Immediate Addressing Mode

* The operand 1s given explicitly i the instruction
» Effective Address of the Operand: Operand value given in the mstruction
* Mov #400, R1

Indirect Addressing Mode

* Here nerther the operands nor the addresses are given explicitly. The
mnstruction provides the information from which the address of the operand
15 determined 1.e., the instruction provides effective address of the operand
using register or memory location. The indirection 13 denoted by () sign
around register or memory.

= Effective Address of the Operand: (Ri) or (LOCA) 1s the contents of a
register or the memory location whose address appears in the instruction

Index Addressing Mode

* The effective address of the operand 1s generated by adding a constant value
to the contents of a register specified in the instruction. The register in this
case 1s called as Index register.

* The operation is indicated as 2(Ri).
* Effective Address of the Operand: X+Fi1 where X is a constant value

(signed integer) and Ri is the index register.

Relative Addressing Mode

* In this mode the content of the program counter 1s added to the address part
of the instruction to obtain the effective address.

= Effective Address : X+PC where X 15 a constant value (signed mnteger) and
PC 1s the contents of the program counter.

* Program counter 1s responsible to carry out the contents of the operands

Autoincrement Addressing Mode

+ Thiz iz indirect mode with a modification. The effective addreszs of the cperand i= the contents of a
potnter register specified in the instruction. After acceszing the operand, the contents of thiz pointer
register is incremented automatically to point to the next entity.

+ The mode iz denoted by (Ri)+, where Ri 15 the pointer register.
+ The + sign indicates that Bi iz incremented after the operation.

+ The increment operation is depending on the size of the accessed operand. Thus, the increment
value iz 1 for byte-size operands, 2 for word-size (16-bit) operands and 4 for long-word (32-bit)
operands.

+ Thiz mode 15 useful when operands are stored consecutively in memory 1.e., for array manipulation
+ contents of the register
(Ri}+ =EA

Autodecrement Addressing Mode

This mode iz useful to access an array in the reverse order. The value of the
pointer register specified in the instruction 15 decremented first and this value 1s
used as the effective address of the operand.

The mode 15 denoted by -(Ri1), where Ri is the pointer register.

The - sign indicates that Ri 15 decremented before accessing the operand.

The decrement operation i1s depending on the size of the accessed operand. Thus,
the decrement value is 1 for byte-size operands, 2 for word-size (16-bit) operands
and 4 for long-word (32-bit) operands.

This two modes (Autoincrement and Autodecrement) are useful to implement a
data structure called Stack.

. (Ri) -=EA

b. Explain Basic Instruction Types.

Ans. Instruction Set Categories based on the Operands explicitly specified in the instruction.
Three-address or 3-Operand instructions

Two-address or 2-Operand instructions

One-address or 1-Operand instructions

Zero-address or 0-Operand instructions

hobhE

Three-address or 3-Operand instructions

* Three-address instruction can be represented symbolically ADD A B, C

» A and B are called the source operands, C is called destination operand, and
ADD is the operation to be performed on the operands.

*+ A general mstruction of this type has the format

Operation Source Source Destination
Operandl Operand2 Operand

Two-address or 2-Operand instructions

* Two-address instruction can be represented symbolically ADD A, B

* A and B are called the source operands, B 1s called destination operand, and
ADD is the operation to be performed on the operands.

* A general instruction of this type has the format

Operation Source Source/Destination

Operand Operand

One-address or 1-Operand instructions

*» Only one Operand will be specified in the mnstructions.
* Accumulator Register will be used as second Operand.
» Example: ADD A

* Acc <- [Acc]H[A] Meaning : Add the contents of accumulator with the
memory location A ; And Store the result in the accumulator register

* General Format:

| Operation

Source/Destination Operand

Zero-address or 0-Operand instructions

* Locations of the operands are defined implicitly.
» Stack will be used to store operands.

* Example: ADD Top two elements of the stack will popped and sum of the
popped numbers will pushed on to stack

» General Format:

