USN					

Internal Assessment Test 2 – January 2023

Sub):			THEORY DESIGN	AND		Sub Code:	21CS51	Branch :	AIDS		
Dat	te:	30/01/	2024	Duration:	Max Marks:	50	Sem		V		O	BE
				Answ	er any FIVE Q	uesti	<u>ons</u>			MARKS	CO	RBT
1		Oper Langu	ators age re erator) The least or and M The string Conc Eg. I 111, The deno form with	of RE. presented is called r Union of tr f strings th M={ε, 001 Concatena gs that ca catenating L={001,10 001001, 10 closure(or ted L* and ed by tak repetitions	in the form of egular expression. egular expression of languages at are in either equivalent at a control of languages at are in either equivalent end of languages at are in either et a control of languages end of languages end	of example	apression (so the content of the con	ymbols set. >1 MARF ted L U M L={001,1 11} M is the string in L.M is {0} a language trings that from L, p em. Eg. L	parated (I, is the 0,111) set of L and (001,01, ge L is can be ossibly = {0,1}	[4]	CO3	Ll

i) T L={ RE= b ii) { L={	Fo accept {ε, 0, 1, 01 = (01+1)*(String sta {0011, 101	strings of 0 1, 011, 101, 0 $0+\epsilon$)+(0+ ϵ)(arts and end	's and 1's had 1's had 10101}	following Languages: aving no 2 consecutive 0's >1 MARK>2 MARKS rent alphabet over Σ={0,1} }>1 MARK>2 MARKS	[6]	CO3	L3
Giv sim Rig	δ $\rightarrow q1$ $q2$ $*q3$ $\Rightarrow \text{ all the applify the } c$ $\Rightarrow \text{ Riy}$ $= 0 : R$ R R	0 q2 q2 q3 e regular e expressions 0FA: 1 (**) (**) (**) (**) (**) (**) (**) (**	as much as	for $\mathbf{R_{ij}}^{(0)}$, $\mathbf{R_{ij}}^{(1)}$, $\mathbf{R_{ij}}^{(2)}$. Try to	[10]	CO3	L3

3 a	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[5]	CO3	L3
-----	---	-----	-----	----

PROOF: Suppose L is regular. Then L = L(A) for some DFA A. Suppose A has n states. Now, consider any string w of length n or more, say $w = a_1 a_2 \cdots a_m$, where $m \geq n$ and each a_i is an input symbol. For $i = 0, 1, \ldots, n$ define state p_i to be $\hat{\delta}(q_0, a_1 a_2 \cdots a_i)$, where δ is the transition function of A, and q_0 is the start state of A. That is, p_i is the state A is in after reading the first A symbols of A. Note that A is a point A in a state A is a state A in a state A is a state A in a state A.

By the pigeonhole principle, it is not possible for the n+1 different p_i 's for $i=0,1,\ldots,n$ to be distinct, since there are only n different states. Thus, we can find two different integers i and j, with $0 \le i < j \le n$, such that $p_i = p_j$. Now, we can break w = xyz as follows:

- 1. $x = a_1 a_2 \cdots a_i$.
- 2. $y = a_{i+1} a_{i+2} \cdots a_j$.
- 3. $z = a_{j+1} a_{j+2} \cdots a_m$.

---->3 MARKS

Prove L={aⁿ | n is prime} is not regular

L is a Regular Language

'n' is an integer constant

Select a string 'w' from L such that

L={aa, aaa, aaaaa, aaaaaaaa.....}

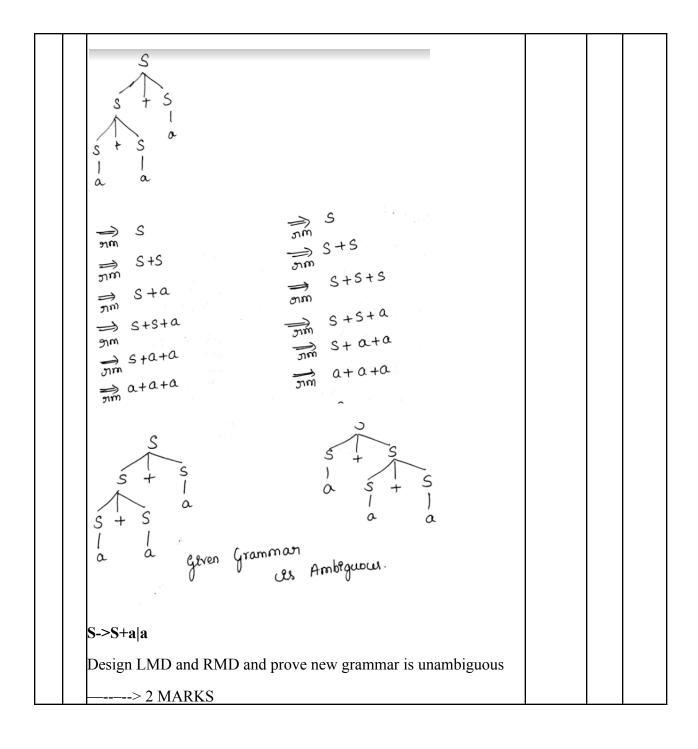
Let n=3

aaa

x=a

v=a

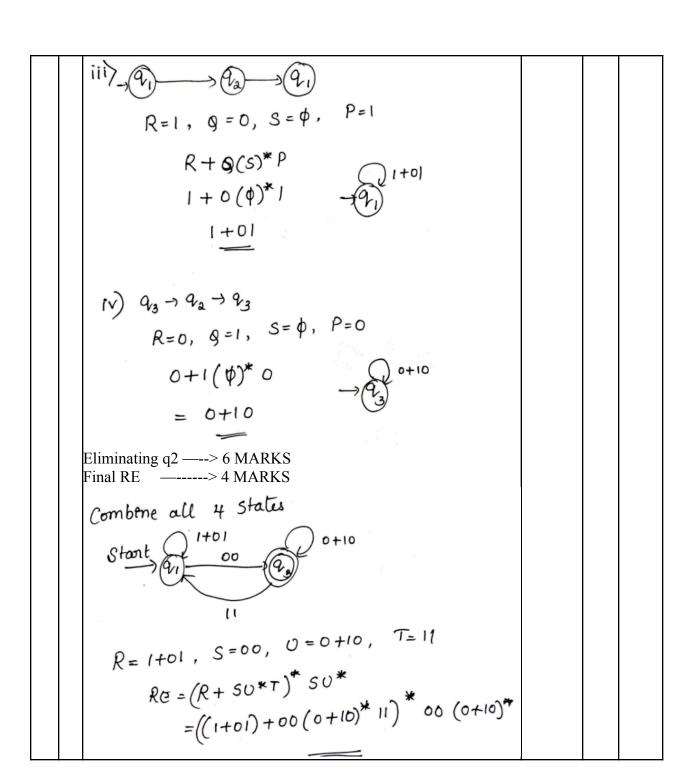
7=2


For $k=1=xy^kz=aaa \in L$

k=2= aaaa ∉ L contradiction

____> 2 MARKS

	There are four important components in a grammatical description of a language:			
	1. There is a finite set of symbols that form the strings of the language being defined. This set was $\{0,1\}$ in the palindrome example we just saw. We call this alphabet the <i>terminals</i> , or <i>terminal symbols</i> .			
	2. There is a finite set of <i>variables</i> , also called sometimes <i>nonterminals</i> or <i>syntactic categories</i> . Each variable represents a language; i.e., a set of strings. In our example above, there was only one variable, P , which we used to represent the class of palindromes over alphabet $\{0,1\}$.			
	3. One of the variables represents the language being defined; it is called the start symbol. Other variables represent auxiliary classes of strings that are used to help define the language of the start symbol. In our example, P, the only variable, is the start symbol.			
	4. There is a finite set of <i>productions</i> or <i>rules</i> that represent the recursive definition of a language. Each production consists of:			
b	(a) A variable that is being (partially) defined by the production. This variable is often called the <i>head</i> of the production.	[5]	CO3	L
	(b) The production symbol \rightarrow .			
	(c) A string of zero or more terminals and variables. This string, called the body of the production, represents one way to form strings in the language of the variable of the head. In so doing, we leave terminals unchanged and substitute for each variable of the body any string that is known to be in the language of that variable.			
	The four components just described form a context-free grammar, or just grammar, or CFG . We shall represent a CFG G by its four components, that is, $G = (V, T, P, S)$, where V is the set of variables, T the terminals, P the set of productions, and S the start symbol.			
	3 MARKS			
	Construct a CFG for L= $\{a^n b^{2n} n \ge 1\}$.			
	S->aSbb abb			
	CFG, G={{S}, {a,b},P, S} —> 2 MARKS			


	Obtain the LFD and RMD for a+a+a, using the following production rules			
	s→S+Sla			
	Show whether the grammar is ambiguous or not. If ambiguous, design grammar to be unambiguous.			
	Left Most: —>4 MARKS			
	RightMost—> 4 MARKS			
4	S $S \Rightarrow S \Rightarrow$	[10]	CO2	L5

		Give	e Fi	rst aı	nd Follow for following Production rules. S→ABCDE			
					A→alε			
					B→b ε C→c			
					D→dlε			
					E→elε			
		D	Е	Г				
		P r	F I	F O				
		o d	R S	L L				
		u ct	T	O W				
		io n						
		S	{	{				
			a, b,	\$ }				
5	a		c	,		[4]	CO2	L3
		A	}	,				
		A	{ a,	{ b,				
			ω ~	c }				
		В	{	{				
			b, ε	c }				
			}					
		С	{ c	{ d,				
			}	e, \$				
				}				
		D	{ d,	{ e,				
			ε }	e, \$ }				
		Е	{	{				

|--|

	0	1		
→q1	q2	q1		
q2	q3	q1		
*q3	q3	q2		
2) 9 ₃ -> 0	+95*P +0(\$)*0 ====================================)	<u>~~</u> €	

	Con	side	er th	e gramn	ar be	low						
	T→	E+T T*F (E)li	IF									
	2	2. I 3. (Find Cons	struct a p	and Fo	OLLOW g table ar	nd show w (1) parser	hether the or not.				
		$E \ E' \ T$,	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	T + F	T' T'	$egin{array}{c c} ec{\epsilon} & \epsilon \ ec{\mathbf{d}} & \mathbf{d} \end{array}$					
		T'		\rightarrow	*	F T'	$ \epsilon $					
6		ľ		\rightarrow	(E	1d	> 2 N	MARKS	[10]	CO2	L3,L5
		F I R S T	F O L L O W									
	Е	{i d, () }	\$,) }									
	E	{ + , , ,	\$,) }									
	T	{i d, ({ + ,									

F {i { d, + () } } \$,) } \$,) } \$,) } \$,) } \$,) } \$,) } \$,) \$,)
T' { { { *, + { ε } } } } } F {i {d, + (, , } } \$,) } \$,) } \$,) } \$
T' {
F {i { d, + (, ,) } \$,) } \$,) } \$,) } \$,) } \$
F {i {d, + () } \$,) } \$, } \$, } \$, } \$, } \$, } \$,
F {i { d, + (, ,) } \$,) } \$, } \$, } \$, } \$
F {i { d, + (, ,) } \$,) } \$, }
F {i {d, + (, ,) } \$,) } \$,)
d, + (, ,)
d, + (, ,)
* }
Parsing table —> 3 MARKS
E C >TE' C >TE'
K
T TOFT TOFT
T->×FT T-> 8 T-> e
F F-78d F-7(e)
Final statement —> 1 MARK
Grammar is accepted by LL(1)