USN					

Internal Assessment Test 1 – Oct 2023 Solution and Scheme

Sub:	Digital Image Processing				Sub Code:	18CS741	Branch:	CSE			
Date:		Duration:	90 mins	Max Marks:	50	Sem / Sec:	7(A,B,C)				BE
			Answer any	/ FIVE FULL Qu	iestioi		•	MAR KS	C O	RB T	
:	Explain the fund sol: fundamental step block diagram (1 Color Image Processing Image Restoration Image Enhancement Problem Image Acquisition	wavelets & Multiresolution Processing	generally images Compression M S lge Base R &	torphological Processing egmentation Object Recognition Object Recognition	ng wi	th a neat a bl	ock diagram		5	1,2	L2
S	Explain the concepts of the co	ation(2.5)- [Digitizing	the co-ordin					5	1,2	L2

2	Briefly explain the following terms. Sol:		1,2	
	 a) Neighbors of a pixel(2)- 4-neighbours of p: N4(p), diagonal-neighbours of p: ND(p), 8-neighbours of p: N8(p) b) Adjacency types and connectivity(2)- 4-adjacency, 8-adjacency, m-adjacency(mixed adjacency) c) Distance function(1) d) Euclidean distance(1) e) City block distance(1) 	7		L2
	Compute the following distance between the two pixels using the three distances:			
	sol: $q:(1,1) \ p:(2,2)$ a) Euclidean distance (1) $D_e(p,q) = [(x-s)^2 + (y-t)^2]^{1/2}$ b) City block distance(1) $D(p,q) = x-s + y-t $ c) Chessboard distance(1)	3		
	$D(p,q)= \max(x-s , y-t)$			
4	Consider the image segment shown, $3 \ 1 \ 2 \ 1(q)$ $2 \ 2 \ 0 \ 2$ $1 \ 2 \ 1 \ 1$ $(p)1 \ 0 \ 1 \ 2$ Let $V=\{1,2\}$. Compute the length of the shortest 4,8 and m-path between p and q. Sol: Finding shortest path(10) $4PATH=(x+1,y),(x-1,y),(x,y+1),(x,y-1)$ $8PATH=(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1)$ m-path= if q is in $N_4(p)$ Or q is in $N_0(p)$ and $N_4(p)$ intersection $N_4(q)$ has no pixels Explain piecewise-linear transformation function Sol: • Explanation(1) • contrast stretching(3)	10	1,2	L3
	threshold (3)bit plane slicing(3)			
5	Define normalized histogram Sol: definition (2)	2	1,2	L2
	Consider a 3 bit image (L=8) of size 64x64 pixels (MN=4096) with the intensity distribution given in the table. Perform histogram equalization.		1,2	
	0 1 2 3 4 5 6 7			
	790 1023 850 656 329 254 122 81	8		L3
	Sol: equalization (8)			

Suppose that a 3-bit image (L=8) of size 64×64 pixels (MN = 4096) has the intensity distribution shown in following table. Get the histogram equalization transformation function and give the p _* (s_*)			
for each s _k .			
$r_k \qquad n_k \qquad p_r(r_k) = n_k/MN$			
$egin{array}{cccc} r_0 = 0 & 790 & 0.19 \\ r_1 = 1 & 1023 & 0.25 \\ \end{array}$			
$r_2 = 2$ 850 0.21 $r_3 = 3$ 656 0.16			
$r_4 = 4$ 329 0.08 $r_5 = 5$ 245 0.06			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
V16/2018			
$r_k = n_k = p_r(r_k) - n_r/MN$			
$r_0 = 0$ 790 0.19 $r_1 = 1$ 100.3 0.25 $r_2 = 1$ 3 0.25 $r_3 = 3$ 556 0.16 $r_4 = 1$ 329 0.18 $r_5 = 5$ 245 0.06 $r_6 = 6$ 122 0.03 $r_5 = 6$ 10.00 $r_6 = 6$ 122 0.03 $r_7 = 7$ 81 0.02			
$\frac{7}{4} = \frac{329}{329}$ 0.08 $\frac{7}{5} = \frac{5}{245}$ 0.06 $\frac{7}{6} = 6$ 122 0.03			
/=0			
$s_1 = T(r_1) = 7 \sum_{j=0} p_r(r_j) = 7 \times (0.19 + 0.25) = 3.08 \rightarrow 3$			
$s_{1} = T(r_{1}) = 7 \sum_{j=0}^{5} p_{r}(r_{j}) = 7 \times (0.19 + 0.25) = 3.08 \longrightarrow 3$ $s_{2} = 4.55 \longrightarrow 5 \qquad s_{3} = 5.67 \longrightarrow 6$ $s_{4} = 6.23 \longrightarrow 6 \qquad s_{5} = 6.65 \longrightarrow 7$ $s_{6} = 6.86 \longrightarrow 7 \qquad s_{7} = 7.00 \longrightarrow 7$			
$s_4 = 6.23 \rightarrow 6 \qquad s_5 = 6.65 \rightarrow 7$ $s_7 = 6.86 \rightarrow 7 \qquad s_8 = 7.00 \rightarrow 7$			
36 - 0.00 / 7			
$p_{r}(r_{k})$ s_{k}			
25 7.0 5.6 5.6			
1.5 + 4.2 + 7.7(r) 1.0 + 2.8 + 7.7(r)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
a b c FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.			
Explain smoothing spatial filters in detail.		1,2	
Sol:			
Filters Explanation(10) Use: for blurring and noise reduction.			
Type of smoothing filters:	10		L2
1.Standard average			
2. Weighted average.			
3. Median filter			
D. Michail Hitol			