
USN

Internal Assessment Test 1 – Set 2 – December 2023
Sub: Object Oriented Programming with Java Sub Code: BCS306A Branch ISE

Date: 20/12/2023 Duration: 90 min’s Max Marks: 50 Sem/Sec: III / A, B & C OBE

Solution MAR
KS

CO RBT

1a How is Java different from C programming language? 2

Ans

POP OOP
Program
Organization

Program is divided into small parts
called functions

Program is divided
into small parts
called objects

Importance Importance is not give to data but to
functions

Importance is give
to data rather than
procedures

Approach POP follows top down
approach

OOP follows
bottom up approach

Access
Specifier

Does not have any access specifier Has three access specifiers namely
public, private and
protected

Data Moving Data can move freely from function
to function in the system

Objects can move and communicate
with each other

Maintainabilit
y

To add new data and
function it is not easy

Provides an easy way to add new
data and functions

Data Access Function uses global data for
sharing that can be accessed freely
from function to function in the
system

Objects use local data and can be
accessed in a control manner.

(any 4 correct points carries 2 marks)

CO1L1

1b. Briefly explain the core characteristics of object oriented programming. 8

Ans

Object-oriented programming (OOP) is a programming paradigm that uses objects,
which are instances of classes, to organize and structure code. The core characteristics
of object-oriented programming include:
Encapsulation: [brief Explanation carries 2 Marks]
Encapsulation is wrapping of data and function or method into a single unit. It is the
mechanism that binds together code and data it manipulates, and keeps both safe from
outside interference and misuse. Encapsulation is a protective wrapper that prevents
code and data from being arbitrarily accessed by other code defined outside the
wrapper. Access to the code and data inside the wrapper is tightly controlled through a
well-defined interface. The power of encapsulated code is that everyone knows how to
access it and thus can use it regardless of the implementation details and without fear
of unexpected side effects.
Data Abstraction: [brief Explanation carries 2 Marks]
Abstraction means displaying only essential information and hiding the details. Data
abstraction refers to providing only essential information about the data to the outside
world, hiding the background details or implementation.
3 Inheritance: [brief Explanation carries 2 Marks]
Inheritance is the process by which one object acquires the properties of another

CO1L1

object. Inheritance supports the concept of hierarchical classification. For example, a
Golden Retriever belongs to the class - dog, dog in turn is part of the class mammal,
and mammal is under the larger class animal. Mammal is called the subclass of
animals and animals is called the mammal’s superclass.
4 Polymorphism: [brief Explanation carries 2 Marks]
Polymorphism, as the name suggests, is the phenomena by virtue of which the same
entity can exist in two or more forms. In OOPS, functions can be made to exhibit
polymorphic behaviour. Functions with different set of formal arguments can have the
same name. Polymorphism is of two types: static and dynamic

2a What is type casting? Illustrate with an example, the meaning of automatic type
casting? 4 CO1L2

Ans

Type casting:[1M]
It is often necessary to store a value of one type into the variable of another type. In
these situations the value that to be stored should be casted to destination type.
Assigning a value of one type to a variable of another type is known as Type
Casting .Type casting can be done in two ways.
In Java, type casting is classified into two types,

1. Widening Casting(Implicit)

2. Narrowing Casting(Explicitly done)

Automatic type casting:[1M]

When one type of data is assigned to another type of variable, an automatic type
conversion will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example,
the int type is always large enough to hold all valid byte values, so no explicit cast
statement is required. For widening conversions, the numeric types, including integer
and floating-point types, are compatible with each other. However, there are no
automatic conversions from the numeric types to char or boolean. Also, char and
boolean are not compatible with each other. As mentioned earlier, Java also performs
an automatic type conversion when storing a literal integer constant into variables of
type byte, short, long, or char.

Example:[2M]
class Promote {
public static void main(String args[]) {
byte b = 42;
char c = 'a';
short s = 1024;
int i = 50000;
float f = 5.67f;
double d = .1234;

double result = (f * b) + (i / c) - (d * s);
System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));
System.out.println("result = " + result);

}
}

2b Briefly explain the different features of Java with suitable examples. 6 CO1L2

Ans

Simple:
Java was designed to be easy for the professional programmer to learn and use
effectively. Assuming that you have some programming experience, you will not find
Java hard to master. If you already understand the basic concepts of object-oriented
programming, learning Java will be even easier. Best of all, if you are an experienced
C++ programmer, moving to Java will require very little effort. Because Java inherits
the C/C++ syntax and many of the object-oriented features of C++, most programmers
have little trouble learning Java.

Object-Oriented:
Although influenced by its predecessors, Java was not designed to be source-code
compatible with any other language. This allowed the Java team the freedom to design
with a blank slate. One outcome of this was a clean, usable, pragmatic approach to
objects. Borrowing liberally from many seminal object-software environments of the
last few decades, Java manages to strike a balance between the purist’s “everything is
an object” paradigm and the pragmatist’s “stay out of my way” model. The object
model in Java is simple and easy to extend, while primitive types, such as integers, are
kept as high-performance non objects.

Robust:
The multiplatform environment of the Web places extraordinary demands on a
program, because the program must execute reliably in a variety of systems. Thus, the
ability to create robust programs was given a high priority in the design of Java. To
gain reliability, Java restricts you in a few key areas to force you to find your mistakes
early in program development. At the same time, Java frees you from having to worry
about many of the most common causes of programming errors. Because Java is a
strictly typed language, it checks your code at compile time. However, it also checks
your code at run time. Many hard-to-track-down bugs that often turn up in hard-to-
reproduce run-time situations are simply impossible to create in Java. Knowing that
what you have written will behave in a predictable way under diverse conditions is a
key feature of Java.

Multithreaded:
Java was designed to meet the real-world requirement of creating interactive,
networked programs. To accomplish this, Java supports multithreaded programming,
which allows you to write programs that do many things simultaneously. The Java
run-time system comes with an elegant yet sophisticated solution for multiprocess
synchronization that enables you to construct smoothly running interactive systems.
Java’s easy-to-use approach to multithreading allows you to think about the specific
behavior of your program, not the multitasking subsystem.

Distributed:
Java is designed for the distributed environment of the Internet because it handles
TCP/IP protocols. In fact, accessing a resource using a URL is not much different

from accessing a file. Java also supports Remote Method Invocation (RMI). This
feature enables a program to invoke methods across a network.

Dynamic:
Java programs carry with them substantial amounts of run-time type information that
is used to verify and resolve accesses to objects at run time. This makes it possible to
dynamically link code in a safe and expedient manner. This is crucial to the robustness
of the Java environment, in which small fragments of bytecode may be dynamically
updated on a running system.

[any 6 points carries 6M]

3a Write a Java program to calculate the average among the elements {8, 6, 2, 7} using
for each looping. 7 CO1L1

Ans

public class AverageCalculator { //[creating class carries 1M]
public static void main(String[] args) {
// Array of elements
int[] numbers = {8, 6, 2, 7};//[declaration of variable carries 2M]

// Calculate the sum using a for-each loop
int sum = 0;
for (int number : numbers) {
sum += number;

}//[using for each carries 2M]

// Calculate the average
double average = (double) sum / numbers.length;

// Display the result
System.out.println("Elements: " + java.util.Arrays.toString(numbers));
System.out.println("Sum: " + sum);
System.out.println("Average: " + average);
//[printing appropriate output carries 2M]

}
}

3b How is for each different from for loop? 3 CO1L1

Ans

The enhanced for loop (for-each loop) in Java is designed to simplify the process of
iterating over collections or arrays. Here are three key differences between the for-
each loop and the traditional for loop:

Normal for-loop for-each(Enhanced for loop)
This for-loop is present from JDK1 This for loop is present from JDK5
In a normal for-loop, we can increase
the counter as per our wish by using

i=i+x(where x is any constant
x=1,2,3…)

But enhanced for loop will execute in
a sequential manner i.e counter will
always increase by one.

Using this for loop we can iterate on
any container object.

We can only iterate on that container
by using this loop to implement the
iterable interface.

In this for-loop, we can iterate in
both decrement or increment order. But in this for-loop, we can iterate

only in increment order.

In this for-loop, we can replace
elements at any specific index.

But in this for-loop, we don’t have
access to the index, so we cannot
replace elements at any specific
index.

By using normal for-loop we can
print array elements either in the
original order or in reverse order.

But in the for-each loop, we can print
array element only in the original
order, not in reverse order

Example: Printing element in a 1D
array
int[] x={1,2,3};

for(int i=0;i<x.length;i++){

System.out.println(x[i]);

}

Example: Printing element in a 1D
array using for-each loop
int[] x={1,2,3};

for(int a : x){

System.out.println(a);

}

[any 3 points carries 3M]

4 How to declare and accept values for two dimensional arrays in Java? Explain with a
suitable example. 10 CO1L2

Ans

In Java, multidimensional arrays are actually arrays of arrays. These, as you might
expect, look and act like regular multidimensional arrays. However, as you will see,
there are a couple of subtle differences. To declare a multidimensional array variable,
specify each additional index using another set of square brackets.

For example, the following declares a two-dimensional array variable called twoD:
int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally, this matrix is
implemented as an array of arrays of int.

The following program numbers each element in the array from left to right, top to
bottom, and then displays these values:

// Demonstrate a two-dimensional array.
class TwoDArray {
public static void main(String args[]) {

int twoD[][]= new int[4][5];
int i, j, k = 0;
for(i=0; i<4; i++)
for(j=0; j<5; j++) {

twoD[i][j] = k;
k++;

}
for(i=0; i<4; i++) {
for(j=0; j<5; j++)
System.out.print(twoD[i][j] + " ");
System.out.println();

}
}

}

5a
Are the below statements valid? I)for (; ;) ii) for(int a:arr[])

iii) while() { loop: a=b+c/d; }
if(condition==TRUE) loop;

3
CO1L3

Ans i) Valid ii) Invalid iii) Invalid

5b List the different iteration statements used in Java and briefly explain them with
suitable examples

7

Ans

Java’s iteration statements are for, while, and do-while. These statements create what
we commonly call loops. As you probably know, a loop repeatedly executes the same
set of instructions until a termination condition is met. As you will see, Java has a
loop to fit any programming need.
[listing the statements carries 1M]

While:[explanation 1M+Example 1M]
The while loop is Java’s most fundamental loop statement. It repeats a statement or
block while its controlling expression is true. Here is its general form:

while(condition) {
// body of loop

}
The condition can be any Boolean expression. The body of the loop will be executed
as long as the conditional expression is true. When condition becomes false, control
passes to the next line of code immediately following the loop. The curly braces are
unnecessary if only a single statement is being repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of "tick":
// Demonstrate the while loop.
class While {
public static void main(String args[]) {
int n = 10;
while(n > 0) {
System.out.println("tick " + n);
n--;

}
}

}

do-while:[2M]
there are times when you would like to test the termination expression at the end of
the loop rather than at the beginning. Fortunately, Java supplies a loop that does just
that: the do-while. The do-while loop always executes its body at least once, because
its conditional expression is at the bottom of the loop. Its general form is

do {
// body of loop

} while (condition);
Each iteration of the do-while loop first executes the body of the loop and then
evaluates the conditional expression. If this expression is true, the loop will repeat.
Otherwise, the loop terminates. As with all of Java’s loops, condition must be a
Boolean expression.

// Demonstrate the do-while loop.
class DoWhile {
public static void main(String args[]) {

int n = 10;
do {

System.out.println("tick " + n);
n--;

} while(n > 0);
}

}

for[2M]
there are two forms of the for loop. The first is the traditional form
that has been in use since the original version of Java. The second is the newer “for-
each” form.
Both types of for loops are discussed here, beginning with the traditional form.
Here is the general form of the traditional for statement:
for(initialization; condition; iteration) {
// body
}
If only one statement is being repeated, there is no need for the curly braces.

6

A class called EMPLOYEE, which models the employeesof an organization and
identified with id, name and salary. The method incrementSalary(percentage)
increases the salary of the employee by the computed percentage. The calculated
percentage to be sent depends on the grade of the employee received as input from the
user. Grade A-3%, B-5%, C-7% and D-10%.Develop an EMPLOYEE class with
suitable main() method using Java programming language.

10 CO2L3

Ans

import java.util.Scanner;
class EMPLOYEE {
private int id;
private String name;
private double salary;

public EMPLOYEE(int id, String name, double salary) {
this.id = id;
this.name = name;
this.salary = salary;

}

public void incrementSalary(char grade) {
double percentage = 0.0;
switch (grade) {
case 'A':
percentage = 3.0;
break;

case 'B':
percentage = 5.0;
break;

case 'C':
percentage = 7.0;
break;

case 'D':
percentage = 10.0;
break;

default:
System.out.println("Invalid grade. Salary remains unchanged.");
return;

}

double incrementAmount = salary * (percentage / 100);
salary += incrementAmount;

System.out.println("Salary incremented by " + percentage + "%. New salary: $"
+ salary);
}

public void displayDetails() {
System.out.println("Employee ID: " + id);
System.out.println("Employee Name: " + name);
System.out.println("Employee Salary: $" + salary);

}
}

public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);

System.out.print("Enter Employee ID: ");
int id = scanner.nextInt();
scanner.nextLine(); // consume the newline character

System.out.print("Enter Employee Name: ");
String name = scanner.nextLine();

System.out.print("Enter Employee Salary: $");
double salary = scanner.nextDouble();

System.out.print("Enter Employee Grade (A/B/C/D): ");
char grade = scanner.next().charAt(0);

EMPLOYEE employee = new EMPLOYEE(id, name, salary);
employee.displayDetails();
employee.incrementSalary(grade);

scanner.close();
}}

Output:
Enter Employee ID: 1234
Enter Employee Name: CMRIT
Enter Employee Salary: $70000
Enter Employee Grade (A/B/C/D): B
Employee ID: 1234
Employee Name: CMRIT
Employee Salary: $70000.0
Salary incremented by 5.0%. New salary: $73500.0

