

USN

Internal Assessment Test I – Dec 2023

Sub: OOPS WITH JAVA Sub Code: BCS306A Branch: CSE

Date: 19/12/23 Duration: 90 mins Max Marks: 50 Sem/Sec: III A,B,C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. a)
Create a Java program to print the following pattern using nested loops:

1

12

123

1234

[3] CO1 L2

1 b)
Create a scenario involving multiple classes that showcases the concept of

inheritance. Implement a base class and a derived class with overridden methods.
[3] CO2 L2, L3

1 c)
Write a program that calculates the compound interest using the formula

A = P(1 + r/n)^(nt), where:

A is the amount after n years,

P is the principal amount,

r is the annual interest rate (as a decimal),

n is the number of times interest is compounded per year,

t is the number of years.

[4] CO1 L3

2 a)
Implement a program that simulates a simple calculator. Take user input for two

numbers and an operator (+, -, *, /). Use a switch statement to perform the

corresponding operations.

[3] CO1 L3

2 b)
Write a program that uses the enhanced for loop to iterate over an array of

integers. If the loop encounters a negative number, break out of the loop and print

the sum of the positive numbers encountered so far.

[4] CO1 L3

2 c)
Differentiate between literals and variables. Provide examples of different types

of literals in Java.
[3] CO1 L2

3 a)
Define constructors and types of constructors in Java and their purpose. - Explore

the use of the 'this' keyword and its significance.
[4] CO2 L1

3 b)
class Simple{

 int a = 10;

String s1 = “CMRIT”;

 public static void main(String args[]){

 System.out.println("Hello Java");

 } }

Based on the above code write the names of identifiers, Literals, types of

literals, data types, and access specifier present in this code.

[3] CO1 L3

3 c)
Explain the process of argument passing in Java methods. Differentiate

between pass-by-value and pass-by-reference.
[3] CO2 L2

4 a)
Write a program for garbage collection in Java and its impact on memory

management.
[4] CO1 L2

4 b)
Write a program in java to calculate the factorial of a number using

recursion concept.
[3] CO1 L3

4 c)
Discuss the concept of returning objects from methods in Java. Provide

an example to illustrate this process.
[3] CO2 L1

5 a)
Discuss access control in Java classes, including public, private,

protected, and default access modifiers
[3] CO2 L2

5 b)
Implement a Java method that checks if a number is a prime number. Test

the method with various inputs.
[4] CO3 L3

5 c)
Implement a program that prints the first 10 numbers of the Fibonacci

series using a for loop.
[3] CO2 L3

6 a)
Your program involves creating multiple instances of a class representing

employees. Explain how you would declare objects, assign object reference

variables, and manage these instances.

[3] CO1 L2

6 b)
Will the code successfully compile? What will be the output.

public class A {

 int x = 20;

}

public class B extends A { int x = 30;}

public class Test {

public static void main(String[] args)

{

 B b = new B();

 System.out.println(b.x);

 A a = new A();

 System.out.println(a.x);

 A a2 = new B();

 System.out.println(a2.x);

 }

}

[3] CO3 L3

6 c)
Write a java program to define a base class Animal with a method makeSound(),

and then it creates two subclasses Dog and Cat that override the makeSound()

method. Finally, in the AnimalTest class, objects of Animal, Dog, and Cat are

created and their makeSound() methods are called.

[4] CO3 L3

CI CCI HOD

CO PO Mapping

Course Outcomes

M
o
d

u
le

s

co
v
er

ed

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

P
S

O
1

P
S

O
2

P
S

O
3

P
S

O
4

CO1
Describe the characteristics of Graphics
Interface and its principles.

1 & 2 2 3 - 3 - 3 - - - - - - - - 3 2

CO2
Analyze, design and evaluate user
interface design

1,2,3,4
& 5

2 3 3 3 - 3 - - - - - - - - 3 2

CO3
Explain the components of web
systems

2,3 & 4

2 3 2 3 - 3 - - - - - - - - 3 2

CO4
Demonstrate the guidelines of
multimedia.

2,3 & 4

2 3 2 3 - 3 - - - - - - - - 3 2

CO5

Understand the prototype and kinds of
test

5

2 3 2 3 - 3 - - - - - - - - 3 2

COGNITIVE

LEVEL
REVISED BLOOMS TAXONOMY KEYWORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,

discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,

change, classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,

infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)
CORRELATION

LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation

PO2 Problem analysis PO8 Ethics 1 Slight/Low

PO3 Design/development of solutions PO9 Individual and team work 2
Moderate/

Medium

PO4
Conduct investigations of

complex problems
PO10 Communication 3

Substantial/

High

PO5 Modern tool usage PO11 Project management and finance

PO6 The Engineer and society PO12 Life-long learning

PSO1 Develop applications using different stacks of web and programming technologies

PSO2 Design and develop secure, parallel, distributed, networked, and digital systems

PSO3 Apply software engineering methods to design, develop, test and manage software systems.

PSO4 Develop intelligent applications for business and industry

USN

Internal Assessment Test 1 – December 2023

Sub: OOPS WITH JAVA
Sub

Code:
BCS306A

Branch

:
CSE

Date: 19-12-2023 Duration: 90 mins
Max

Marks:
50

Sem /

Sec:
III(A, B & C) OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Create a Java program to print the following pattern using nested loops:

1

12

123

1234

SOLUTION:

public class PatternPrint {

 public static void main(String[] args) {

 int rows = 4; // You can change this value to adjust the number of rows

 // Nested loops to print the pattern

 for (int i = 1; i <= rows; i++) {

 for (int j = 1; j <= i; j++) {

 System.out.print(j);

 }

 System.out.println(); // Move to the next line after each row

 }

 }

}

[3] CO1 L2

 1 (b) Create a scenario involving multiple classes that showcases the concept of inheritance.

Implement a base class and a derived class with overridden methods.

SOLUTION:

class Animal {
 void sound() {
 System.out.println("Animal makes a sound");
 }
}
class Dog extends Animal {
 @Override

[3] CO2 L2, L3

 void sound() {
 System.out.println("Dog barks");
 }

 void wagTail() {
 System.out.println("Dog wags its tail");
 }
}

public class InheritanceExample {
 public static void main(String[] args) {
 // Create an instance of the base class
 Animal animal = new Animal();
 animal.sound();

 System.out.println();

 // Create an instance of the derived class
 Dog dog = new Dog();
 dog.sound(); // This will call the overridden method in Dog class
 dog.wagTail(); // This is a method specific to the Dog class
 }
}

1(c) Write a program that calculates the compound interest using the formula

A = P(1 + r/n)^(nt), where:

A is the amount after n years,

P is the principal amount,

r is the annual interest rate (as a decimal),

n is the number of times interest is compounded per year,

t is the number of years.

SOLUTION:

import java.util.Scanner;

public class CompoundInterestCalculator {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter the principal amount (P): ");

 double principal = scanner.nextDouble();

 System.out.print("Enter the annual interest rate (as a decimal) (r): ");

 double annualRate = scanner.nextDouble();

 System.out.print("Enter the number of times interest is compounded per year (n): ");

 int compoundFrequency = scanner.nextInt();

[4] CO1 L3

 System.out.print("Enter the number of years (t): ");

 int years = scanner.nextInt();

 double interestRatePerCompoundingPeriod = annualRate / compoundFrequency;

 int totalCompoundingPeriods = compoundFrequency * years;

 double compoundInterest = principal * Math.pow(1 +

interestRatePerCompoundingPeriod, totalCompoundingPeriods) - principal;

 System.out.println("Compound Interest after " + years + " years: " +

compoundInterest);

 scanner.close();

 }

}

2 (a) Implement a program that simulates a simple calculator. Take user input for two

numbers and an operator (+, -, *, /). Use a switch statement to perform the

corresponding operations.

SOLUTION:

import java.util.Scanner;

public class SimpleCalculator {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);

 // Input the first number
 System.out.print("Enter the first number: ");
 double num1 = scanner.nextDouble();

 // Input the operator
 System.out.print("Enter the operator (+, -, *, /): ");
 char operator = scanner.next().charAt(0);

 // Input the second number
 System.out.print("Enter the second number: ");
 double num2 = scanner.nextDouble();

 // Perform the calculation based on the operator
 double result = 0;
 switch (operator) {
 case '+':
 result = num1 + num2;
 break;
 case '-':
 result = num1 - num2;
 break;
 case '*':
 result = num1 * num2;

[3] CO1 L3

 break;
 case '/':
 if (num2 != 0) {
 result = num1 / num2;
 } else {
 System.out.println("Error: Cannot divide by zero.");
 return;
 }
 break;
 default:
 System.out.println("Error: Invalid operator.");
 return;
 }

 // Display the result
 System.out.println("Result: " + result);

 scanner.close();
 }
}

2(b)

Write a program that uses the enhanced for loop to iterate over an array of integers. If

the loop encounters a negative number, break out of the loop and print the sum of the

positive numbers encountered so far.

SOLUTION:

public class ArraySumWithBreak {
 public static void main(String[] args) {
 // Sample array of integers
 int[] numbers = {1, 5, -3, 8, 2, -7, 10};

 // Variable to store the sum of positive numbers
 int sum = 0;

 // Enhanced for loop to iterate over the array
 for (int number : numbers) {
 // Check if the number is negative
 if (number < 0) {
 break; // Break out of the loop if a negative number is encountered
 }

 // Add the positive number to the sum
 sum += number;
 }

 // Print the sum of positive numbers encountered so far
 System.out.println("Sum of positive numbers: " + sum);
 }
}

[4] CO1 L3

2(c) Differentiate between literals and variables. Provide examples of different types of

literals in Java.

SOLUTION:

Literals: In programming, a literal is a notation representing a fixed value in the source

code. It is a constant value that is used directly in the code without being computed or

assigned a variable name. In other words, literals are data given in a variable or constant.

Variables: Variables, on the other hand, are containers or storage locations identified by a

memory address and an associated symbolic name (an identifier). Unlike literals, variables

can vary; their values can be changed during the execution of a program.

Types of Literals:

1. Integer Literal

2. Float literal

3. character literal

4. String literal

[3] CO1 L2

3(a). Define constructors and types of constructors in Java and their purpose. - Explore the

use of the 'this' keyword and its significance.

SOLUTION:

Constructors in Java: A constructor in Java is a special type of method that is used to
initialize objects. It has the same name as the class and doesn't have a return type. When
an object is created using the new keyword, a constructor is called automatically to
initialize the object. Constructors are used to set initial values for object attributes or
perform any setup needed for the object.
Types of Constructors in Java:
1. Default Constructor:
A constructor with no parameters is called the default constructor.
If a class doesn't have any constructor defined, Java provides a default constructor
automatically.
It initializes the attributes to their default values (e.g., 0 for numeric types, null for
objects).
2. Parameterized Constructor:
A constructor with parameters is called a parameterized constructor.
It allows you to initialize object attributes with specific values at the time of object
creation.
3. Copy Constructor:
A constructor that takes an object of the same class as a parameter is called a copy
constructor.It creates a new object by copying the values of another object.
The 'this' Keyword: In Java, the this keyword is a reference variable that refers to the
current object. It is used to differentiate between instance variables and local variables
when they have the same name

[4] CO2 L1

3(b) class Simple{
 int a = 10;
String s1 = “CMRIT”;

[3] CO1 L3

 public static void main(String args[]){
 System.out.println("Hello Java");
 } }
Based on the above code write the names of identifiers, Literals, types of literals, data
types, and access specifier present in this code.

SOLUTION:

Identifiers:
Simple (class name)
a (variable name)
s1 (variable name)
main (method name)
args (parameter name)
Literals:
10 (integer literal assigned to variable a)
"CMRIT" (string literal assigned to variable s1)
"Hello Java" (string literal passed to System.out.println method)
Types of Literals:
Integer Literal (10)
String Literal ("CMRIT" and "Hello Java")
Data Types:
int (data type for variable a)
String (data type for variable s1)
String[] (data type for parameter args in the main method)
Access Specifier:
public (access specifier for the main method)

3(c) Explain the process of argument passing in Java methods. Differentiate between pass-

by-value and pass-by-reference.

SOLUTION:

Pass-by-Value in Java:
In Java, when you pass a primitive data type or an object reference to a method, you are
passing a copy of the value.
For primitive data types (e.g., int, char), the actual value is passed.
For objects, the reference (memory address) to the object is passed, not the object itself.

Pass-by-Reference (Not Applicable in Java):
Java strictly follows the pass-by-value mechanism. The term "pass-by-reference" implies
passing the actual reference to the variable, allowing changes to the original variable. This
is not how Java works. While it may seem like objects are being passed by reference, what
is actually passed is a copy of the reference, not the reference itself. Therefore, Java is
more accurately described as "pass-by-value."

[3] CO2 L2

4(a) Write a program for garbage collection in Java and its impact on memory

management.

SOLUTION:

[4] CO1 L2

Program:

public class TestGarbage1{
 public void finalize()
 {
 System.out.println("object is garbage collected");
 }
 public static void main(String args[]){
 TestGarbage1 s1=new TestGarbage1();
 TestGarbage1 s2=new TestGarbage1();
 s1=null;
 s2=null;
 System.gc();
 }
}

Impact:

Automatic Management: Garbage collection in Java automatically reclaims memory
occupied by objects that are no longer in use.
Prevents Leaks: It helps prevent memory leaks by deallocating memory from unreferenced
objects.
Enhances Productivity: Developers can focus on application logic without manual memory
allocation concerns.
Dynamic Allocation: Java allows dynamic memory allocation, and the garbage collector
handles deallocation.
Performance Impact: While introducing some overhead, modern garbage collectors are
designed for minimal impact on application performance.

4(b) Write a program in java to calculate the factorial of a number using recursion concept.

SOLUTION:

import java.util.Scanner;
public class FactorialCalculator {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);

 // Input a non-negative integer
 System.out.print("Enter a non-negative integer: ");
 int number = scanner.nextInt();

 // Check for a non-negative input
 if (number < 0) {
 System.out.println("Factorial is undefined for negative numbers.");
 } else {
 // Calculate and display the factorial
 long factorial = calculateFactorial(number);
 System.out.println("Factorial of " + number + " is: " + factorial);
 }

[3] CO1 L3

 scanner.close();
 }

 // Recursive method to calculate factorial
 private static long calculateFactorial(int n) {
 if (n == 0 || n == 1) {
 return 1; // Base case: factorial of 0 and 1 is 1
 } else {
 return n * calculateFactorial(n - 1); // Recursive case
 }
 }
}

4(c) Discuss the concept of returning objects from methods in Java. Provide an example to

illustrate this process.

SOLUTION:

In Java, methods can return objects just like they can return primitive data types. This
allows for flexibility in designing classes and methods, enabling the creation of instances
within a method and returning those instances to the caller.
Example:

Class Test{

Test reMetod()

{

 Test t = new Test();

 return t;

}

Public static void main(String args[])

{

 Test obj = new Test();

 Test obj1 = obj.reMethos();

}

}

[3] CO2 L1

5 (a) Discuss access control in Java classes, including public, private, protected, and default

access modifiers

SOLUTION:

Public (public):
A class, method, or variable declared with the public modifier is accessible from any other
class or package.
It has the broadest visibility.
Example: public class MyClass {...}
Private (private):
A class, method, or variable declared with the private modifier is only accessible within the
same class.

[3] CO2 L2

It provides the highest level of encapsulation.
Example: private int myVariable;
Protected (protected):
A class, method, or variable declared with the protected modifier is accessible within the
same class, package, and subclasses (even if they are in a different package).
It is more restrictive than public but less restrictive than private.
Example: protected void myMethod() {...}
Default (Package-Private):
If no access control modifier is specified (i.e., the default), the class, method, or variable is
accessible only within the same package.
It provides a level of visibility between public and private.
Example: class MyClass {...} (without any modifier)

5 (b) Implement a Java method that checks if a number is a prime number. Test the method

with various inputs.

SOLUTION:

import java.util.Scanner;

public class PrimeNumberChecker {

 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);

 // Input a number
 System.out.print("Enter a number: ");
 int number = scanner.nextInt();

 // Check if the number is prime and display the result
 if (isPrime(number)) {
 System.out.println(number + " is a prime number.");
 } else {
 System.out.println(number + " is not a prime number.");
 }

 scanner.close();
 }

 // Method to check if a number is a prime number
 public static boolean isPrime(int number) {
 if (number <= 1) {
 return false; // 0 and 1 are not prime numbers
 }

 // Check for divisibility from 2 to half of the number
 for (int i = 2; i <= number / 2; i++) {
 if (number % i == 0) {
 return false; // The number is divisible, so it's not a prime number
 }
 }

[4] CO3 L3

 return true; // The number is prime
 }
}

5(c) Implement a program that prints the first 10 numbers of the Fibonacci series using a

for loop.

SOLUTION:

public class FibonacciSeries {
 public static void main(String[] args) {
 // Define the number of terms to generate
 int n = 10;

 // Print the first 10 numbers of the Fibonacci series
 System.out.println("Fibonacci Series (first 10 numbers):");
 for (int i = 0; i < n; i++) {
 System.out.print(fibonacci(i) + " ");
 }
 }

 // Method to calculate the Fibonacci series for a given term
 public static int fibonacci(int term) {
 if (term == 0) {
 return 0;
 } else if (term == 1) {
 return 1;
 } else {
 int a = 0, b = 1, result = 0;

 for (int i = 2; i <= term; i++) {
 result = a + b;
 a = b;
 b = result;
 }

 return result;
 }
 }
}

[3] CO2 L3

6(a) Your program involves creating multiple instances of a class representing employees.

Explain how you would declare objects, assign object reference variables, and manage

these instances.

SOLUTION:

public class Employee {
 private String name;
 private int employeeId;

 // Constructor
 public Employee(String name, int employeeId) {
 this.name = name;

[3] CO1 L2

 this.employeeId = employeeId;
 }

 // Getter methods (not shown for brevity)

 public static void main(String[] args) {
 // Declare and create objects of the Employee class
 Employee employee1 = new Employee("John Doe", 101);
 Employee employee2 = new Employee("Jane Smith", 102);

 // Assign object reference variables
 Employee manager = employee1;

 // Access and manage instances
 System.out.println("Employee 1: " + employee1.getName() + ", ID: " +
employee1.getEmployeeId());
 System.out.println("Employee 2: " + employee2.getName() + ", ID: " +
employee2.getEmployeeId());

 System.out.println("Manager: " + manager.getName() + ", ID: " +
manager.getEmployeeId());

 // Modify an instance
 employee1.setName("John Updated");

 // Display updated information
 System.out.println("Updated Employee 1: " + employee1.getName() + ", ID: " +
employee1.getEmployeeId());
 }
}

6(b) Will the code successfully compile? What will be the output.
public class A {
 int x = 20;
}
public class B extends A { int x = 30;}
public class Test {
public static void main(String[] args)
{
 B b = new B();
 System.out.println(b.x);

 A a = new A();
 System.out.println(a.x);

 A a2 = new B();
 System.out.println(a2.x);
 }
}

SOLUTION:

Yes
Output 30

[3] CO3 L3

20
20

6(c) Write a java program to define a base class Animal with a method makeSound(), and

then it creates two subclasses Dog and Cat that override the makeSound() method.

Finally, in the AnimalTest class, objects of Animal, Dog, and Cat are created and their

makeSound() methods are called.

SOLUTION:

// Base class
class Animal {
 // Method to make a sound
 public void makeSound() {
 System.out.println("Generic animal sound");
 }
}

// Subclass Dog
class Dog extends Animal {
 // Override makeSound() for Dog
 @Override
 public void makeSound() {
 System.out.println("Dog barks");
 }
}

// Subclass Cat
class Cat extends Animal {
 // Override makeSound() for Cat
 @Override
 public void makeSound() {
 System.out.println("Cat meows");
 }
}

// Test class
public class AnimalTest {
 public static void main(String[] args) {
 // Create objects of Animal, Dog, and Cat
 Animal genericAnimal = new Animal();
 Dog myDog = new Dog();
 Cat myCat = new Cat();

 // Call makeSound() for each object
 System.out.println("Sound from generic animal:");
 genericAnimal.makeSound();

 System.out.println("\nSound from a dog:");
 myDog.makeSound();

[4] CO3 L3

 System.out.println("\nSound from a cat:");
 myCat.makeSound();
 }
}

CI CCI HOD

PO Mapping

COGNITIVE

LEVEL
REVISED BLOOMS TAXONOMY KEYWORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,

discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,

change, classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,

infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)
CORRELATION

LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation

PO2 Problem analysis PO8 Ethics 1 Slight/Low

PO3 Design/development of solutions PO9 Individual and team work 2
Moderate/

Medium

PO4
Conduct investigations of

complex problems
PO10 Communication 3

Substantial/

High

PO5 Modern tool usage PO11 Project management and finance

PO6 The Engineer and society PO12 Life-long learning

PSO1 Develop applications using different stacks of web and programming technologies

PSO2 Design and develop secure, parallel, distributed, networked, and digital systems

PSO3 Apply software engineering methods to design, develop, test and manage software systems.

PSO4 Develop intelligent applications for business and industry

