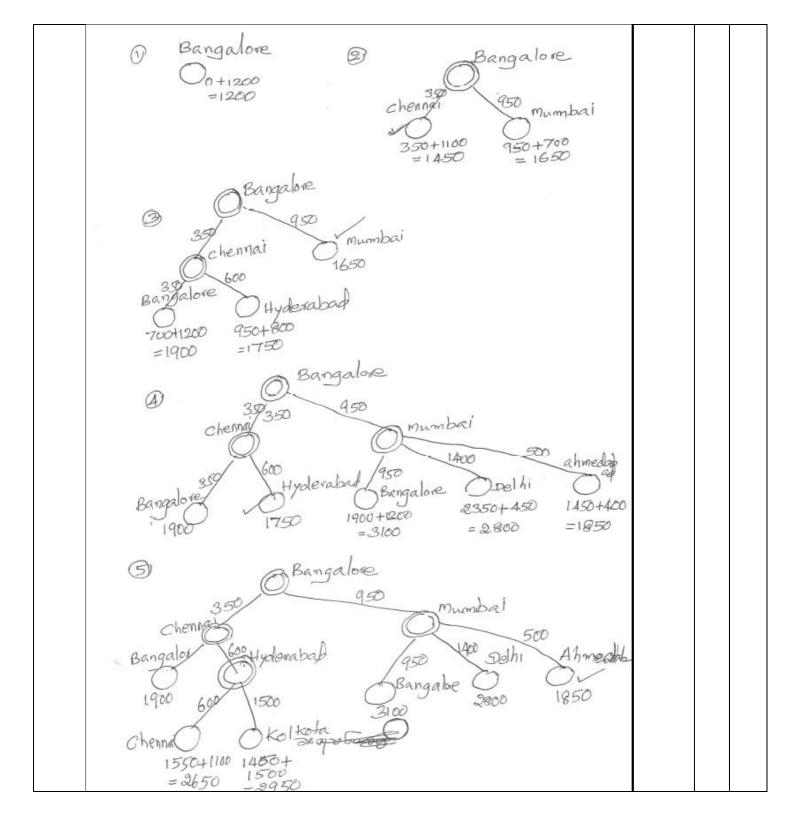
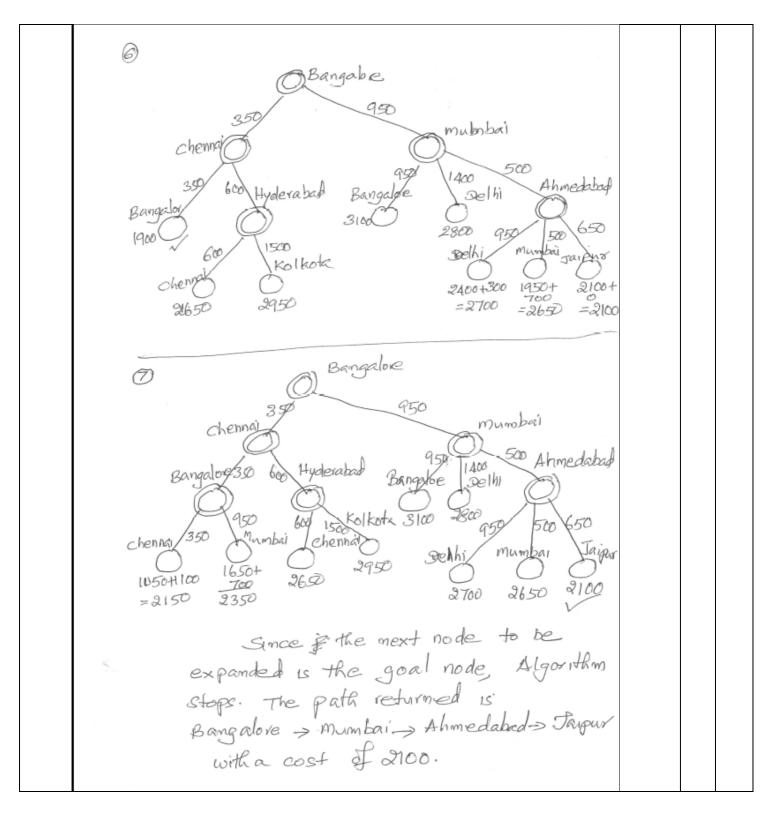
|       | <br> | <br> | <br> | <br> | <br> |
|-------|------|------|------|------|------|
| TICNI |      |      |      |      |      |
| USIN  |      |      |      |      |      |
| 0.01  |      |      |      |      |      |
|       |      |      |      |      |      |



## ANSWER KEY


## Internal Assessment Test 1 – Dec 2023


| Sub:  | Artificial Intelligen<br>Learning                                                       | ce and M                                                                                                                                                                                               | achine                                                                                                                |                                     | Sub Code:                | 21CS54          | Branch: | CS       | E   |     |
|-------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|-----------------|---------|----------|-----|-----|
| Date: | 21/12/2023 Duration:                                                                    | 90 mins                                                                                                                                                                                                | Max Marks:                                                                                                            | 50                                  | Sem/Sec:                 | V/2             | A,B&C   |          | OF  | 3E  |
|       | A                                                                                       | nswer any FI                                                                                                                                                                                           | VE FULL Ques                                                                                                          | tions                               |                          |                 | М       | ARK<br>S | CO  | RBT |
| 1     | a. Discuss the four categorie                                                           | es used to defi                                                                                                                                                                                        | ne artificial inte                                                                                                    | elligenc                            | e.                       |                 |         | 6        | CO1 | 2   |
|       | Knowledg                                                                                | uld need to<br>humanly<br>nguage pro-<br>ge represent<br>d reasoning<br>earning<br>vision<br>e cognitive<br>he "laws of<br>e reasoning<br>e notation for<br>ations amon<br>rational age<br>omething th | modeling ap<br>thought" app<br>processes.<br>or statements<br>ag them.<br>ent approach<br>nat acts<br>cts so as to ac | proach<br>proach<br>about<br>chieve | n<br>all kinds of<br>the | f objects in th | ne      | 4        | CO1 | 2   |
|       | Ans:                                                                                    | 1                                                                                                                                                                                                      |                                                                                                                       |                                     |                          |                 |         |          |     |     |
|       | The Turing Test approa<br>A computer passes th<br>questions, cannot tell<br>a computer. | e test if a h                                                                                                                                                                                          |                                                                                                                       |                                     |                          |                 |         |          |     |     |
| 2     | a. What is an agent and disc                                                            | uss its interac                                                                                                                                                                                        | tion with enviro                                                                                                      | nment                               | using an appr            | opriate diagram | 1.      | 5        | CO1 | 2   |

| AgentSensorsPercepts??.Figure 2.1Agents interact with environments through sensors and actuators.An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators.Percept is an agent's perceptual inputs at any given instant.An agent's behavior is described by the agent function that maps any given percept sequence to an action.                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|---|
| <ul><li>b. Discuss the five components of a well-defined problem.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5  | CO1 | 2 |
| <ul> <li>A problem can be defined formally by five components: <ol> <li>The initial state that the agent starts in.</li> <li>Example in(Ooty)</li> </ol> </li> <li>A description of the possible actions available to the agent.<br/>Given a particular state ACTIONS(s), returns the set of actions that can be executed in s. For example, from the state In(Ooty), the applicable actions are {Go(Mysore), Go(Coimbatore)}.</li> <li>A description of what each action does; the transition model A function RESULT(s, a) that returns the state that results from doing action a in state s.<br/>Example: RESULT(In(Ooty),Go(Mysore)) = In(Mysore)</li> <li>The goal test, which determines whether a given state is a goal state.</li> <li>A path cost function that assigns a numeric cost to each path.</li> </ul> |    |     |   |
| 3 What are the possible states of vacuum world problem that has two rooms. Draw the state space for the problem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 | CO1 | 1 |

|   | Figure 3.3 The state space for the vacuum world. Links denote actions: $L = Left$ , $R = Right$ , $S = Suck$ .                                                                                                                                                                                                                                                                                                                                                                                                                               |       |     |   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|---|
| 4 | a. Discuss any two applications of AI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5     | CO1 | 3 |
|   | Some Examples are<br>Touring problems.<br>VLSI layout problem<br>Robot navigation<br>Automatic assembly sequencing                                                                                                                                                                                                                                                                                                                                                                                                                           |       |     |   |
|   | <ul><li>b. Explain the following terms in the context of searching for solutions</li><li>i) Search Tree ii) Frontier (also known as open list) iii) Loopy path</li></ul>                                                                                                                                                                                                                                                                                                                                                                     | 5     | CO1 | 2 |
|   | <ul> <li>The possible action sequences starting at the initial state form a search tree with the initial state at the root; the branches are actions and the nodes correspond to states in the state space of the problem.</li> <li>The set of all leaf nodes available for expansion at any given point is called the frontier. (Also called the open list)</li> <li>Loopy path – A path reaching a previous node in the state space tree. <ul> <li>Results in repeated states</li> <li>Search tree becomes infinite</li> </ul> </li> </ul> |       |     |   |
| 5 | <ul><li>a. Discuss the difference between uninformed searches and heuristic searches?</li><li>b. Explain greedy best first search with any example.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                | [4+6] | CO1 | 2 |
|   | a) The uninformed search strategies are the strategies have no additional<br>information about states beyond that provided in the problem definition. BFS<br>and DFS are examples of uninformed search strategies                                                                                                                                                                                                                                                                                                                            |       |     |   |
|   | Strategies that know whether one non-goal state is "more promising" than<br>another are called informed search or heuristic search strategies Informed<br>Search Strategies uses problem-specific knowledge beyond the definition of<br>the problem itself—can find solutions more efficiently than can an<br>uninformed strategy. A general approach for informed search is called best-                                                                                                                                                    |       |     |   |

|   | · · · ·                                                | •                                                                                                   |                                                                      | ely to lead to a so                                                           | node that is closest to<br>olution quickly.                                         |                   |    |     |  |
|---|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------|----|-----|--|
|   |                                                        |                                                                                                     | le, in the t                                                         | ourist problem v                                                              | ristic function; that is<br>ve use the straight lin                                 |                   |    |     |  |
| 6 | with minin<br>Cost (dista                              | nal cost. Clearly sh                                                                                | now the sequ<br>from one cit                                         | ence in which the n<br>y to another is show                                   | below to reach Jaipur from<br>odes are expanded to obter<br>as edge weight. Use the | ain the solution. | 10 | CO1 |  |
|   |                                                        | $\leftarrow$                                                                                        | 1400                                                                 | 450                                                                           |                                                                                     |                   |    | 1   |  |
|   | (<br>Chenr<br>Select s<br>Location                     | Hyderabad<br>traight line distance sh<br>Straight line                                              | -O <sub>Kolkata</sub>                                                | e below as heuristic fun<br>Straight line<br>distance to laipur               | ction value                                                                         |                   |    |     |  |
|   | Select s                                               | Hyderabad                                                                                           |                                                                      | e below as heuristic fun                                                      | ction value                                                                         |                   |    |     |  |
|   | Select s                                               | Hyderabad<br>traight line distance sh<br>Straight line<br>distance to Jaipur                        | 1500<br>Kolkata<br>own in the tabl                                   | e below as heuristic fun<br>Straight line<br>distance to Jaipur               | ction value                                                                         |                   |    |     |  |
|   | Select s<br>Location<br>Bangalore                      | Hyderabad<br>traight line distance sho<br>Straight line<br>distance to Jaipur<br>1200               | 1500<br>Kolkata<br>own in the tabl<br>Location<br>Delhi              | e below as heuristic fun<br>Straight line<br>distance to Jaipur<br>300        | ction value                                                                         |                   |    |     |  |
|   | Select s<br>Location<br>Bangalore<br>Chennai           | Hyderabad<br>traight line distance sh<br>Straight line<br>distance to Jaipur<br>1200<br>1100        | 1500<br>Kolkata<br>own in the tabl<br>Location<br>Delhi<br>Ahmedabad | e below as heuristic fun<br>Straight line<br>distance to Jaipur<br>300<br>400 | ction value                                                                         |                   |    |     |  |
|   | Select s<br>Location<br>Bangalore<br>Chennai<br>Mumbai | Hyderabad<br>traight line distance sh<br>Straight line<br>distance to Jaipur<br>1200<br>1100<br>700 | 1500<br>Kolkata<br>own in the tabl<br>Location<br>Delhi<br>Ahmedabad | e below as heuristic fun<br>Straight line<br>distance to Jaipur<br>300<br>400 | ction value                                                                         |                   |    |     |  |



