USN					

Internal Assessment Test 1 – Oct 2023

Sub:	Artificial I	ntelligence & Ma	chine Learn	ing		Sub Code:	18CS61	Branch:	CSI	Ξ
Date:	30.10.20	23 Duration	n: 90 mins	Max Marks:	50	Sem/Sec:	6 A,B,C		O	BE
	ı		<u> </u>	FULL Questio	<u>ons</u>	1		M	СО	RBT
	List requirem	ents of good cont	rol strategie	es.						
	- Should ca	nuse motion								
	- Should be	e systematic								
1 (a)	Production sy	stems provide str	uctures for	AI problems					COL	T 4
1 (a)	BFS and DFS	S provide means f	or searching	g through a sta	te spa	ice.		2	CO1	L1
	Best First Sea	arch allows for gro	edy search.							
	Heuristic sea	rch improves effic	iency of sea	arch to arrive a	at non	-optimal soluti	ons.			
	Consider the f	ollowing 4-gallon	water jug p	roblem.						
	You are given	2 jugs, 4-gallon,	B-gallon. Tl	here are no me	easuri	ng markers.				
		et 2 gallons in the								
	, ,	-	- •							
	Write the prod	uction rules and s	olve the pro	blem.						
	1	(x,y)	→ (4,y)	Fill 4	-gallo	on jug				
		if x<4								
	2	(x,y)	\rightarrow (x,3)	Fill 3	-gallo	on jug				
		if y<3								
	3	(x,y)	\rightarrow (x-d,y)	Pour	some	water out of th	ie 4-			
(b)		if x>0	•	gallo	n jug			8	CO1	L2
	4	(x,y)	\rightarrow (x,y-d)	Pour	some	water out of th	ne 3-			
		if y>0		gallo	n jug					
	5	(x,y)	→(0,y)			allon jug				
		if x>0	· · • /							
	6	(x,y)	\rightarrow (x,0)	Empt	y 3-ga	allon jug				
		if y>0	(-,-)			3 5				
	7	(x,y)	→(4,y-(4-x	()) Pour	water	from 3-gallon	jug to			
		$if(x+y) \ge 4$	· (1, y (¬-x	′′		g until 4-gallor				
		and $y>0$		full	J ⁴⁴	6 gm101	J0			
		min jr 0		1411						

	8	(x,y)	$\rightarrow (x-(3-y),3)$	Pour water from 4 gallon jug to			
		$if(x+y)\geq 3$		3-gallon jug until 3-gallon jug is			
		and x>0		full			
	9	(x,y)	\rightarrow (x+y,0)	Pour all water from 3-gallon jug			
		if(x+y)≤4		into 4 gallon jug			
	10	(x,y)	→(0,x+y)	Pour all water from 4-gallon jug			
		$if(x+y) \le 3$		into 3 gallon jug			
	11	(0,2)	→ (2,0)	Pour 2 gallons from 3-gallon jug			
				into 4-gallon jug			
	12	(2,y)	→ (0,y)	Empty 2-gallons into 4-gallon			
				jug			
	Solution						
	(0,0)						
	(0,3) #Apply F	Rule 2					
	(3,0) #Apply F	Rule 9					
	(3,3) #Apply F	Rule 2					
	(4,2) #Apply F	Rule 7					
	(0,2) #Apply r	ule 5 or 12					
	(2,0) #Apply 1	rule 9 or 11					
	Differentiate	exact cost and he	uristic cost.				
	Exact cost (g): measure of the	actual cost				
2 (a)	Heuristic cos	t (h): estimate of	cost from current n	ode to goal node.	•	CO1	1.0
2 (a)	In a path find	ling scenario, exac	ct cost is the actual	cost from node A to node B.	2	CO1	L2
	The heuristic	any direction of movement is allowed,					
	Manhattan if	Chebyshev) if 8 moves are allowed.)					
	i) Use BFS to	find path from B t	to J				
(b)	ii) Use DFS to	find path from B	to J		o	COS	12
	iii) Use A* alg	e the path and cost. Show steps.	8	CO2	L3		
	In BFS and DI	FS, use alphabetic	al order.				

	Explain concept of problem reduction using a neat diagram of AND-OR graph			
	Or graphs find a single path to the goal			
	AND-OR graphs – represent solutions to a problem that can be solved by decomposing			
	them into smaller portions.			
	Goal: Acquire TV set			
2 (a)	Goal : Steal TV Set Goal : Earn some money Goal : Buy TV set	_	221	1.0
3 (a)	 AND arc points to any number of successor nodes, all of which must be solved 	4	CO1	L2
	for arc to point to a solution.			
	 Each arm of an AND arc may lead to it's own solution node. 			
	■ In order to find solutions in AND-OR graphs, algorithm should be like a best-first			
	search but with ability to handle AND arcs.			
	■ It may be necessary to go to more than one solution state because each arm of an			
	AND arc must lead to it's own solution node.			
				_
_	Solve the following crypt arithmetic problem by using constraint satisfaction:			
	CROSS+ROADS = DANGER			
	Adding 2 5-digit number will not cause overflow>1			
	So D=1			
(b)	D+S=E	6	CO2	L3
	For DA > 10, C+R+carry_4 >9	U	CO2	13
	R+0=N, S+S=R			
	S>1			
	R is even			
	Guess 1: S=2			

	Grues	4 ± : 5									
	4	- 4年 - 4151	2								
	- 1	- \$ T =	3 <u>+</u> N								
	. 04	$+B = G_1$									
		1+0= N									
		>4									
		.0=5									
		0=6									
	College	0 = 1									
	Guero	2: S=3	3								
	9.	623	310								
[+ 6	251	=								
	1 5	87 4	9								
	8 :	2,5,7,8,9]		74							
		>3,4	E=4 >50 C	5							
	Comer	C=5 (C#A SO								
	3.90		- V=3 =-	_							
	lner	us C=8 -	- A=4 but								
	lgrer	n c=9									
	,	0+5= G	number	us left are							
	•	R+0= N	رھ	428							
	gu	R+0=N W 0=2									
	96233	า									
	+ 62513 =15874										
I-	-170/4	<i>:</i> 6									
		1 - 1: dota)	Elimination (the hym	41- caig on	1					
	Use C			to get the hyp	othesis an	d version	space respe	ctively for the	:		
	Use C		Elimination ting examples		oothesis an	d version	space respe	ctively for the			
4 (a)	Use C				oothesis and	d version Water	Forecast	EnjoySport		CO2	L3
	Use C follow	wing traini	ing examples	s:						CO2	L3
	Use C follow	wing traini Sky	ing examples AirTemp	S: Humidity	Wind	Water	Forecast	EnjoySport		CO2	L3

	4	Sunny	Warm	High	Strong	Warm	Change	Yes
			,	1				
C	oncep	t learning	Task:					
G	iven							
In	stance	es X : Poss	sible days de	escribed by attr	ributes			
	•	Sky (with	values Sunn	y, Cloudy, Ra	iny)			
	• .	AirTemp	(with values	Warm, Cold)				
	•]	Humidity	(with values	Normal, High	n)			
	•	Wind (wit	h values Stro	ong, Weak)				
	•	Water (wi	th values Wa	arm, Cool),				
	•]	Forecast (with values S	Same, Change)			
Н	ypoth	esis H: wi	th 6 attribute	es described by	conjunc	etion of co	onstraints.	
Т	arget c	concept c	: EnjoySport	:X→{0,1}				
Tı	raining	g Example	es, D: 4, 3 p	ositive, 1 nega	itive.			
		_						
S	[0]:	{('0',	'0', '0',	'0', '0',	' 0')}			
(G[0]:	{('?',	'?', '?',	'?', '?',	' ?')}			
	1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
S G	[1]: [1]:	{('Sunny {('?',	y', 'Warm' '?', '?',	, 'Normal',	'Stro	ng', 'Wa	arm', 'Sam	e')}
	2	Cloudy	Warm	Normal	Weak	Warm	Same	Yes
				ormal', '?'		m', 'Sar	ne ')}	
	3	Rainy	Cold	High	Strong	Cool	Change	No
						_		
				', '?', '?' led because				'?', '?', '? ral
			', 'Weak', e general	'?', '?')	- will	not be	included	because S bo
	_		-		157.			
(G[3]:	{('?',	'Warm', '		?', '?') <mark>,</mark> (<mark>'?'</mark> ,	, '?', '?'	, '?', 'Warm
) <mark>, ('?'</mark> , '?')}	<mark>, '?', '?'</mark>	<mark>, </mark>	'Same	'), ('?'	', '?', 'N	ormal', '?',
	4	· · · · · · · · · · · · · · · · · · ·	Warm	Uigh	Strong	Warm	Changa	Yes
	4	Sunny	Warm	High	Strong	vv al III	Change	Tes
								('?', '?',
<u> </u>	vorma	⊥', '?',	, '?', '?')} because	5 boun	uary is	more gene	ral.
_		· <u></u>			·	<u> </u>		·

		1		
	Version Space			
	S[4]: {('?', 'Warm', '?', '?', 'Warm', '?')} G[4]: {('?', 'Warm', '?', '?', '?'), ('?', '?', '?', '?', 'Warm', '?')}			
	What are the drawbacks of Find-S as compared to Candidate Elimination?			
	• Find-S finds a hypothesis consistent with the training data but there is no way to			
	determine whether there are other consistent hypothesis also.			
	• Find-S may find a most specific hypothesis. We may want a more general			
	hypothesis also.			
(b)	Training examples are error-prone / noisy. Inconsistent sets severely mislead	3	CO1	L2
	Find-S as it ignores negative samples.			
	• There should be a mechanism to back track from maximally specific hypothesis			
	reported by Find-S to accommodate possibility of a target concept on a different			
	branch.			
	What are the problem characteristics that must be analyzed for deciding heuristic to use.			
	1. Is the problem decomposable			
	2. Can solution steps be undone or ignored?			
5 (a)	3. Is the universe predictable?		GO 2	1.0
3 (a)	4. Is a good solution absolute or relative?	3	CO2	L2
	5. Is the solution a state or a path?			
	6. The role of knowledge			
	7. Does a task require interaction with a person?			
	Explain simulated annealing with an example.			
	The intuition behind simulated annealing comes from the concept of annealing where			
	metals are cooled until solid state is reached. It usually moves from a higher energy state			
	to a lower one but there is some probability of it moving to a higher energy state also.			
	$P = 1 - e^{\frac{-\Delta E}{k * t}}$			
(b)	Where ΔE is the change in the energy level,	1	CO2	L2
	T is the temperature	7	CO2	1.2
	K is the Boltzmann's constant that gives the correspondence between units of			
	temperature and units of energy.			
	Algorithm			
	1. Evaluate initial state. If it is goal state, return, quit. Otherwise, continue with			
	initial state as current state			

		1		
	2. Initialize best_so_far to current state			
	3. Initialize T as per annealing schedule			
	4. Loop until solution OR no new operator is left in current state:			
	a. Select an operator yet to be applied and apply it to produce new state.			
	b. Evaluate new state. Compute $\Delta E = value \ of \ current -$			
	value of new state			
	If new state is goal state, return, quite			
	If goal state is better than current state, make it current.			
	Set best_so_far to new state			
	If it is not better than current state, make it current state with probability			
	$p'=e^{-\Delta E/T}$			
	c. Revise T as necessary, according to annealing schedule.			
	5. Return best_so_far as answer			
	What is "Inductive Learning Hypothesis"			
(c)	Any hypothesis found to approximate target function well over a sufficiently large set of	2	CO1	L1
	training examples will also approximate the target function well over other unobserved			
	examples.			
	Explain Steepest Hill climbing algorithm. Explain it's limitations with a neat diagram			
	or example.			
	Algorithm:			
	1. Evaluate initial state. If it is goal state, return			
	2. Loop			
	a. Let SUCC be successor of current state			
6 (a)	b. For each operator that applies to current state, Do	5	CO1	L2
	i. Apply operator to generate new state			
	ii. Evaluate new state. If it is goal state, return it, quit.			
	If not, compare with SUCC			
	If it is better, set SUCC to this state			
	If it is not better, leave SUCC as it is.			
	c. If SUCC is better than current state, set current state to SUCC			
<u> </u>	L	<u> </u>	1	

$S4 = \{?, Hard, No, Wrinkled\}$		
5-Positive example (Green, Soft, Yes,Smooth)		
$S4 = \{?,?,?,?\}$		

CI CCI HOD

	Course Outcomes	Bloo ms Lev el	Mod ules cove red	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8		P O 1 0	P O 1 1	P O 1 2	P S O 1	P S O 2	P S O 3	P S O 4	
CO1	Appraise the theory of Artificial intelligence and Machine Learning.	L2	1,2	3	3	2	2	0	2	2	0	0	0	0	0	0	2	0	3	
CO2	Illustrate the working of AI and ML Algorithms.	L3	2,3,4	3	3	3	3	3	3	0	0	0	0	0	0	0	2	0	3	
CO3	Demonstrate the applications of AI and ML.	L2	4,5	3	3	3	3	3	3	0	0	0	0	0	0	0	2	0	3	

CO PO Mapping

COGNITIVE LEVEL	REVISED BLOOMS TAXONOMY KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

DE	ROGRAM OUTCOMES (PO), PRO	CD AM	SDECIEIC OUTCOMES (DSO)	C	ORRELATION				
	COOKAM OU I COMES (FO), FRO	UKAWI	SPECIFIC OUTCOMES (FSO)		LEVELS				
PO1	Engineering knowledge	PO7	Environment and sustainability	0	No Correlation				
PO2	Problem analysis	Ethics	1	Slight/Low					
PO3 Design/development of solutions PO9 Individual and team work 2 Moderate/									
103		Medium							
PO4	Conduct investigations of	PO10	Communication	3	Substantial/				
104	complex problems	1010	Communication	3	High				
PO5	Modern tool usage	PO11	Project management and finance						
PO6	The Engineer and society	PO12	Life-long learning						
PSO1	Develop applications using differe	nt stacks	s of web and programming technologies	es					
PSO2	Design and develop secure, paralle	el, distri	buted, networked, and digital systems						
PSO3	PSO3 Apply software engineering methods to design, develop, test and manage software systems.								
PSO4	PSO4 Develop intelligent applications for business and industry								