

USN

Internal Assessment Test I – Dec 2023

Sub: OOPS WITH JAVA Sub Code: BCS306A Branch: CSE

Date: 18/01/24 Duration: 90 mins Max Marks: 50 Sem/Sec: III A,B,C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. a)
Explain how access modifiers (protected, default) influence the visibility of classes

within and outside a package. [5] CO3 L2

1 b)
Describe how Java supports multiple inheritances through interfaces. Write a java

program to achieve multiple inheritances using interface concept. [5] CO3 L2,L3

2 a)
Does the below Java code with abstract method compile? If yes provide
implementation for method. If no write the reason and correct the error.

class Puppy

{ abstract void showName();}

[5] CO3 L3

2 b)
What is overloading. Write the difference between method overloading

and constructor overloading. (Min 4 points).
[5] CO3 L2

3 a)
What is the output of the below Java program with an abstract class?

final abstract class Bell

{ }
class DoorBell extends Bell{

 DoorBell()

 {System.out.println("DoorBell ringing..");}}
public class AbstractClassTesting2

{public static void main(String[] args){

 Bell bell = new DoorBell();}}

[5] CO3 L3

3 b)
Write a java program to create one interface CreditCard with 2 methods
accptRupees() and acceptDoller(). Provide implementation for both methods and

print the output.

[5] CO3 L3

4 a)
Explain the hierarchy of exceptions in Java. How are checked and unchecked

exceptions related in the hierarchy with diagram?
[5] CO4 L2

4 b)
What is the output of the below Java code?

public class ExceptionTest5{

 public static void main(String[] args) {

 int ary[] = new int[2];

 ary[10] = 5;

 try { int number= 2/0;}

 catch(Exception e){ System.out.println("Divide by Zero"); }

 finally{System.out.println("Inside FINALLY block"); }}}

[5] CO3 L3

5 a)
How is super used to call the constructor of the super class? Write program to call

super class constructor. [5] CO3 L3

5 b)
Write a java program to use static and default methods inside the interface and

access them.
[5] CO4 L3

 PTO

6 a)
An object of multi-level inherited abstract class cannot be created in memory? State

TRUE or FALSE. [1] CO3 L1

6 b)
Choose a correct statement about Java Interfaces?

A) Interface contains only abstract methods by default.

B) A Java class can implement multiple interfaces
C) An Interface can extend or inherit another Interface.

D) All the above

[1] CO3 L1

6 c)
Which is the correct syntax to import a Java package below?

A)
import PACKAGE1.*; B) import PACKAGE1.CLASS1; C) import

PACKAGE1.PACKAGE2.PACKAGE3.*; D) All the above

[1] CO4 L1

6 d)
In java, can an abstract class be instantiated. Yes or no.

[1] CO3 L1

6 e)
In abstract class we can write abstract methods and non abstract methods. True or

false. [1] CO3 L1

6 f)
Which keyword used to declare a package?

[1] CO4 L1

6 g)
Finally block is related to Exception in java. True or false.

[1] CO4 L1

6 h)
Write syntax to call super class methods.

[1] CO3 L1

6 i)
Write difference between Exception and Errors.

[1] CO3,

CO4

L1

6 j)
Method overriding is a compile time polymorphism. True/False

[1] CO3 L1

CI CCI HOD

USN

Internal Assessment Test II – Jan 2024

Sub: OOPS WITH JAVA Sub Code: BCS306A Branch: CSE

Date: 18/1/24 Duration: 90 mins Max Marks: 50 Sem/Sec: III A,B,C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. a)
Explain how access modifiers (protected, default) influence the visibility of classes

within and outside a package.

Explanation - In Java, access modifiers are keywords that control the visibility of classes,

methods, and fields in a program. There are four access modifiers in Java: public, private,

protected, and the default (package-private) modifier. These modifiers determine which

other classes can access the members of a class and in what context.

Here's how the protected and default (package-private) access modifiers influence the

visibility of classes within and outside a package:

Protected Access Modifier:
If a class is declared with the protected modifier, it is accessible within its own package and
by subclasses (regardless of whether they are in the same package or a different one).
Members with protected access are also accessible within the same package and by
subclasses, whether inside or outside the package.

package com.example;
protected class ProtectedClass {
 protected void protectedMethod() {
 // accessible within the package and by subclasses
 }
}
Default (Package-Private) Access Modifier:
If no access modifier is specified (default), it is also known as package-private. Classes with
default access are accessible only within the same package.
Members with default access are accessible only within the same package.
package com.example;
class DefaultClass {
 void defaultMethod() {
 // accessible only within the package
 }
}

[5] CO3 L2

 1 (b) Describe how Java supports multiple inheritances through interfaces. Write a java

program to achieve multiple inheritances using interface concept.

Solution:

Write up Multiple Inheritance–
Java supports multiple inheritances through interfaces, which are a way to achieve
abstraction and allow a class to inherit the behaviors (method signatures) of multiple
interfaces. In Java, a class can implement multiple interfaces, allowing it to inherit the
abstract methods declared in each interface.
Example:
// Define two interfaces with abstract methods
interface Interface1 {

[5] CO3 L2, L3

 void method1();
}

interface Interface2 {
 void method2();
}

// Implement both interfaces in a class
class MyClass implements Interface1, Interface2 {
 @Override
 public void method1() {
 System.out.println("Implementing method1 from Interface1");
 }

 @Override
 public void method2() {
 System.out.println("Implementing method2 from Interface2");
 }

 // Additional methods specific to MyClass
 public void additionalMethod() {
 System.out.println("Additional method in MyClass");
 }
}

public class Main {
 public static void main(String[] args) {
 // Create an instance of MyClass
 MyClass myObject = new MyClass();

 // Call methods from both interfaces
 myObject.method1();
 myObject.method2();

 // Call an additional method from MyClass
 myObject.additionalMethod();
 }
}

2 (a) Does the below Java code with abstract method compile? If yes provide

implementation for method. If no write the reason and correct the error.

class Puppy

{ abstract void showName();}

Solution:

No.

Correct code:

[5] CO3 L3

Class should be abstract

Abstract class Puppy{abstract void showName();}

2(b)

What is overloading. Write the difference between method overloading

and constructor overloading. (Min 4 points).

Solution:

In Java, overloading refers to the ability to define multiple methods or constructors in a

class with the same name but with different parameters. This allows a class to have

multiple methods or constructors that perform similar actions but can handle different

types or numbers of arguments. Overloading is based on the concept of polymorphism and

is a fundamental feature of object-oriented programming

Method Overloading:

1. Involves defining multiple methods in a class with the same name but different parameter

lists.
2. Used for providing variations of a method based on the type or number of parameters.

3. Return type alone is not sufficient to differentiate overloaded methods.

4. Can be inherited by subclasses.

Constructor Overloading:

1. Involves having multiple constructors in a class with different parameter lists.

2. Used for creating objects with different initial states.

3. Constructors do not have a return type.
4. Not inherited, but can be called using the super() keyword in subclasses.

[5] CO3 L2

3(a). What is the output of the below Java program with an abstract class?

final abstract class Bell

{ }

class DoorBell extends Bell{

DoorBell()

{System.out.println(“DoorBell ringing..”);}}

public class AbstractClassTesting2

{public static void main(String[] args){

Bell bell = new DoorBell();}}

Output: Compile Time Error

Reason: Final classes can not be inherited.

[5] CO3 L3

3(b) Write a java program to create one interface CreditCard with 2 methods
accptRupees() and acceptDoller(). Provide implementation for both methods and

print the output.

Solution :

// Define the CreditCard interface

interface CreditCard {
 void acceptRupees(double amount);

 void acceptDollars(double amount);

}

[5] CO3 L3

// Implement the CreditCard interface
class CreditCardImpl implements CreditCard {

 @Override

 public void acceptRupees(double amount) {
 System.out.println("Accepted Rupees: " + amount);

 }

 @Override

 public void acceptDollars(double amount) {

 System.out.println("Accepted Dollars: " + amount);

 }
}

// Main class to demonstrate the program
public class Main {

 public static void main(String[] args) {

 // Create an instance of CreditCardImpl

 CreditCardImpl myCreditCard = new CreditCardImpl();

 // Call acceptRupees() method

 myCreditCard.acceptRupees(5000.75);

 // Call acceptDollars() method

 myCreditCard.acceptDollars(100.50);
 }

}
4(a) Explain the hierarchy of exceptions in Java. How are checked and unchecked

exceptions related in the hierarchy with diagram?

Solution:

In Java, exceptions are categorized into a hierarchy based on the inheritance structure
defined by the Throwable class. The two main types of exceptions in this hierarchy are:
Checked Exceptions (Compile-time Exceptions):

 These exceptions are checked at compile time.

 Subclasses of Exception that are not subclasses of RuntimeException.

 Developers are required to handle or declare these exceptions using the try-catch
block.

 Common checked exceptions include IOException, SQLException, and
FileNotFoundException.

Unchecked Exceptions (Runtime Exceptions):

 These exceptions are not checked at compile time and typically result from
programming errors or unexpected conditions at runtime.

 Subclasses of RuntimeException.

 Developers are not required to handle or declare these exceptions explicitly.

 Common unchecked exceptions include NullPointerException,
ArrayIndexOutOfBoundsException, and ArithmeticException.

 The Throwable class is the root class for the exception hierarchy.

[5] CO4 L2

4(b) What is the output of the below Java code?

public class ExceptionTest5{

public static void main(String[] args) {

int ary[] = new int[2];

ary[10] = 5;

try { int number= 2/0;}

catch(Exception e){ System.out.println(“Divide by Zero”); }

finally{System.out.println(“Inside FINALLY block”); }}}

Output: Inside FINALLY block

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: Index

10 out of bounds for length 2

 at ExceptionTest5.main(ExceptionTest5.java:5)

[5] CO3 L3

5 (a) How is super used to call the constructor of the super class? Write program to call

super class constructor.

Solution:

In Java, the super keyword is used to call the constructor of the superclass. This is

typically done within the constructor of a subclass to invoke the constructor of its

immediate superclass. The super() statement must be the first statement in the

constructor of the subclass.

Example:

class Animal {

 String type;

 // Constructor of the superclass

[5] CO3 L3

 Animal(String type) {

 this.type = type;

 System.out.println("Animal constructor called");

 }

 void displayInfo() {

 System.out.println("Type of animal: " + type);

 }

}

class Dog extends Animal {

 String breed;

 // Constructor of the subclass

 Dog(String type, String breed) {

 // Calling the constructor of the superclass using super

 super(type);

 this.breed = breed;

 System.out.println("Dog constructor called");

 }

 void displayBreed() {

 System.out.println("Breed of dog: " + breed);

 }

}

public class Main {

 public static void main(String[] args) {

 // Creating an instance of the subclass Dog

 Dog myDog = new Dog("Mammal", "Labrador");

 // Calling methods from both the superclass and subclass

 myDog.displayInfo();

 myDog.displayBreed();

 }

}

5 (b) Write a java program to use static and default methods inside the interface and

access them.

Program :

interface MyInterface {
 static void staticMethod() {

 System.out.println("Static method in the interface");

 }

 default void defaultMethod() {

 System.out.println("Default method in the interface");

 }

 void abstractMethod();

}

// Implement the interface in a class

class MyClass implements MyInterface {

 public void abstractMethod() {

 System.out.println("Implemented abstract method");

 }
}

public class Main {
 public static void main(String[] args) {

 // Call the static method using the interface name

 MyInterface.staticMethod();

 MyClass myObject = new MyClass();

 myObject.defaultMethod();

 myObject.abstractMethod();

 }

}

[5] CO4 L3

6(a) An object of multi-level inherited abstract class cannot be created in memory?

State True / false

Solution: True

[1] CO3 L2

6(b) Choose a correct statement about Java Interfaces?
A) Interface contains only abstract methods by default.
B) A Java class can implement multiple interfaces
C) An Interface can extend or inherit another Interface.
D) All the above
Solution: D

[1] CO3 L1

6(c) Which is the correct syntax to import a Java package below?
A)
import PACKAGE1.*; B) import PACKAGE1.CLASS1; C) import

PACKAGE1.PACKAGE2.PACKAGE3.*; D) All the above

[1] CO4 L1

Solution : D

6(d) In java, can an abstract class be instantiated. Yes or no.
Solution: No [1] CO3 L1

6(e) In abstract class we can write abstract methods and non abstract methods. True or false.
Solution: True [1] CO3 L1

6(f) Which keyword used to declare a package?
Solution:Package [1] CO4 L1

6(g) Finally block is related to Exception in java. True or false.
Solution: True [1] CO4 L1

6(h) Write syntax to call super class methods using super keyword.
Solution: Super.method_name(); [1] CO3 L1

6(i) Write difference between Exception and Errors.
Solution:
Exceptions are events that occur during the execution of a program and can be handled

programmatically, while errors are typically unrecoverable and arise from critical failures in

the system or the application.

[1] CO4 L1

6(j) Method overriding is a compile time polymorphism. True/False
Solution: True [1] CO3 L1

CI CCI HOD

PO Mapping

COGNITIVE

LEVEL
REVISED BLOOMS TAXONOMY KEYWORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,

discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,

change, classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,

infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)
CORRELATION

LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation

PO2 Problem analysis PO8 Ethics 1 Slight/Low

PO3 Design/development of solutions PO9 Individual and team work 2
Moderate/

Medium

PO4
Conduct investigations of

complex problems
PO10 Communication 3

Substantial/

High

PO5 Modern tool usage PO11 Project management and finance

PO6 The Engineer and society PO12 Life-long learning

PSO1 Develop applications using different stacks of web and programming technologies

PSO2 Design and develop secure, parallel, distributed, networked, and digital systems

PSO3 Apply software engineering methods to design, develop, test and manage software systems.

PSO4 Develop intelligent applications for business and industry

