Scheme of Evaluation

Internal Assessment Test Il — FEB 2024

Sub: Database Management System Sub Code: | 21CS53
] Max) .
Date: 01-02-24 | Duration: | 90 mins | Marks: | 50 Sem: v Branch: ISE
Q.NO Description Marks Max
Distribution | Mar
ks
1 What are triggers in SQL? Explain about Triggers in SQL with 10
Suitable example. Definition 2
Explanation
8
2 In the context of Embedded SQL, what is a cursor? How is it used, 10
and what problem does it help to solve?
2+8
3 Define Normalization. Explain 1INF, 2NF and 3NF with examples.
10
2+2+3+3
4 What are Views in SQL? Discuss on methodologies to implement 10
views in SQL. Explain with an example. 5
5
Given the functional dependencies X={A -> B, AB->C, D->AC, D- 10 10
5 >E}and Y={A->BC, D-> AE}, Explain whether these two sets
of functional dependencies are equivalent.
Let the given set of Functional Dependencies be X: {B->A, A->D, 10
6 AB->D}. Find the minimal cover of X. 10

CMR

INSTITUTE OF
TECHNOLOGY USN
Internal Assessment Test Il — FEB
2024(SET3)
. Sub
Sub: | Database Management System Code: 21CS53
Date: 01-02-2024 puration: | 2% [MaxX |5yl sem: [v | Branch: | ISE
min’s | Marks:
Note : Answer FIVE FULL Questions
OBE
PART I MARKS
CO RBT
1 \What are triggers in SQL? Explain about Triggers in SQL with Suitable example. [10] |CO| L2
2
2 |In the context of Embedded SQL, what is a cursor? How is it used, and what [10] |CO | L2
problem does it help to solve? 2
3 | Define Normalization. Explain 1NF, 2NF and 3NF with examples. [10] |CO | L2
2
4 |What are Views in SQL? When the views can be updated and also Discuss on methodologies| [10] |CO | L2
to implement views in SQL. 2
S |Define Functional Dependency. [10] |CO2| L4
Let the given set of Functional Dependencies be X: {B->A, A->D, AB->D}. Find
the minimal cover of X.
6 |Given the functional dependencies X= {A -> B, AB->C, D->AC, D->E} and [10] |CO2| L4
Y={A -> BC, D -> AE}, Explain whether these two sets of functional dependencies are
equivalent

Solution

1. What are triggers in SQL? Explain about Triggers in SQL with Suitable example.

Another important statement in SQL is CREATE TRIGGER. In many cases it is convenient to specify
the type of action to be taken when certain events occur and when certain conditions are satisfied.
For example, it may be useful to specify a condition that, if violated, causes some user to be informed
of the violation. The CREATE TRIGGER statement is used to implement such actions in SQL. A
typical trigger has three components:

Event: When this event happens, the trigger is activated.

Condition (optional): If the condition is true, the trigger executes, otherwise skipped

Action: The action performed by the trigger

The action is to be executed automatically if the condition is satisfied when event occurs.—
Trigger: Events Three event types Insert] Updatel] Deletel] Two triggering times Before the
event] After the event] Two granularities Execute for each row! 1 Execute for each statement
Syntax:

create trigger [trigger_name]
[before [after]

{insert [update | delete}

on [table_name]

[for each row]
[trigger_body]

Trigger name

Create Trigger <name>

Before|After Insert|Update|Delete ON <tablename> That is the event

e Example

Create Trigger ABC
Before Insert On Students

This trigger is activated when an
insert statement is issued, but
before the new record is inserted

Create Trigger XYZ
After Update On Students

This trigger is activated when an
update statement is issued and
after the update is executed

CREATE TRIGGER incr_count AFTER INSERT ON Students £~ Event */

WHEN (new.age<18) ~ Condition */

FOR EACH ROW

BEGIN * Action */
count := count + 1:

END

For example, given Library Book Management database schema with Student database schema. In these databases, if any

student borrows a book from library then the count of that specified book should be decremented. To do so,

Suppose the schema with some data,

mysql> select * from book_det;

e Fommmmmmmmm oo Fommmmm - -
| bid | btitle | copies |
e Fommmmmmmmm o Fommmm - +
| 1] Java | 10 |
| 2| c++ | 5 |
[3| MySql I 10 |
| 4 | Oracle DBMS | 5 |
+o-- - Fommmmmmmmm Fommmm - +

4 rows in set (0.00 sec)

mysql> select * from book_issue;
R e Fommmm - +
| bid | sid | btitle |
R - Fomm +

1 row in set (©.00 sec)

To implement such procedure, in which if the system inserts the data into the book_issue database a trigger should

automatically invoke and decrements the copies attribute by 1 so that a proper track of book can be maintained.

create trigger book_copies_deducts
after INSERT
on book_issue
for each row

update book_det set copies = copies - 1 where bid = new.bid;

Above trigger, will be activated whenever an insertion operation performed in a book_issue database, it will update the

book_det schema setting copies decrements by 1 of current book id(bid).

2.

In the context of Embedded SQL, what is a cursor? How is it used, and what problem does it
help to solve?

Cursors:

A major problem in embedding SQL statements in a host language like C is that an impedance
mismatch occurs because SQL operates on set of records, whereas languages like C do not cleanly
support a set-of-records abstraction. The solution is to essentially provide a mechanism that allows
us to retrieve rows one at a time from a relation.This mechanism is called a cursor. We can declare
a cursor on any relation or on any SQL query (because every query returns a set of rows). Once a
cursor is declared, we can open it (which positions the cursor just before the first row); fetch the next
row; move the cursor (to the next row, to the row after the next n, to the first row, or to the previous
row, etc., by specifying additional parameters for the FETCH command); or close the cursor. Thus,
a cursor essentially allows us to retrieve the rows in a table by positioning the cursorat a particular
row and reading its contents.

Basic Cursor Definition and Usage

cursors enable us to examine, in the host language program, a collection of rows computed by an
Embedded SQL statement:

We usually need to open a cursor if the embedded statement is a SELECT query. However, we can
avoid opening a cursor if the answer contains a single row.

INSERT, DELETE, and UPDATE statements typically require no cursor, although some variants of
DELETE and UPDATE use a cursor.

As an example, we can find the name and age of a sailor, specified by assigning a value to the
host variable ¢ sid, declared earlier, as follows:

EXEC SQL

SELECTS sname, S.age

INTO ¢ sname, :c age

FROM Sailors S WHERES.sid = :¢ sid;

The INTO clause allows us to assign the columns of the single answer row to the host variables
¢ sname and ¢ age. Therefore, we do not need a cursor to embed this query ina host language program.

But what about the following query, which computes the names and ages of all sailors with a rating
greater than the current value of the host variable ¢_minrating?
SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating> :c_minrating
This query returns a collection of rows, not just one row. 'When executed
interactively, the answers are printed on the screen. If we embed this query in
a C program by prefixing the cOlnmand with EXEC SQL, how can the answers
be bound to host language variables? The INTO clause is inadequate because
we must deal with several rows. The solution is to use a cursor:

DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age

FROM Sailors S

WHERE S.rating > :c_minrating;

This code can be included in a C program, and once it is executed, the cursor
sinfo is defined. Subsequently, we can open the cursor:

OPEN sinfo:
The value of c_minrating in the SQI. query associated with the cursor is the
value of this variable when we open the cursor. (The cursor declaration is
processed at compile-time, and the OPEN command is executed at run-time.) A

cursor can be thought of as 'pointing' to a row in the collection of answers to the query associated
with it. When a cursor is opened, it is positioned just before the first row. We can use the FETCH
command to read the first row of cursor sinfo into host language variables:

FETCH sinfoINTO :c_sname, :c_age;

When the FETCH statement is executed, the cursor is positioned to point at the next row (which is
the first row in the table when FETCH is executed for the first time after opening the cursor) and
the column values in the row are copied into the corresponding host variables. By repeatedly
executing this FETCH statement (say, in a while-loop in the C program), we can read all the rows
computed by the query, one row at a time. Additional parameters to the FETCH command allow us
to position a cursor in very flexible ways. How do we know when we have looked at all the rows
associated with the cursor? By looking at the special variables SQLCODE or SQLSTATE, of course.
SQLSTATE, for example, is set to the value 02000, which denotes NO DATA, to indicate that there
are no more rows ifthe FETCH statement positions the cursor after the last row. When we are done
with a cursor, we can close it: CLOSE sinfo; It can be opened again if needed and the value of
:c_minrating in the SQL query associated with the cursor would be the value of the host variable
c_minrating at that time

3. Define Normalization. Explain 1INF, 2NF and 3NF with examples.

= Normalization:

= [he process of decomposing unsatisfactory "bad"
relations by breaking up their attributes into
smaller relations

= Normal form:

= Condition using keys and FDs of a relation to
certify whether a relation schema is in a particular
normal form

= Normalization is carried out in practice so that the
resulting designs are of high quality and meet the
desirable properties

= The practical utility of these normal forms becomes
questionable when the constraints on which they are
based are hard to understand or to detect

= The database designers need not normalize to the
highest possible normal form

= (usually up to 3NF, BCNF or 4NF)

= Denormalization:

= The process of storing the join of higher normal form
relations as a base relation—which is in a lower normal
form

First Normal Form
s Disallows
= composite attributes
= multivalued attributes

= hested relations; attributes whose values for an
individual tuple are non-atomic

» Considered to be part of the definition of relation

(a)
DEPARTMENT

| Dname | Dnumber | Dmgrssn | Diocations |

T I SO

(b)
DEPARTMENT
Dname Dnumber Dmgr_ssn Dlocations
Research 5 333445555 | (Bellaire, Sugarland, Houston)
Administration 4 987654321 | {Stafford}
Headquarters 1 888665555 | {Houston)
(c)
DEPARTMENT

Dname Dnumber Dmgr_ssn

Research 333445555 | Bellaire
Research 333445555 | Sugarland
Research 333445555 | Houston

987654321 | Stafford
888665555 | Houston

a0

Administration

Headquarters

Second Normal Form

Uses the concepts of FDs, primary key

Definitions

= Prime attribute: An attribute that is member of the primary
key K

= Full functional dependency: a FD Y -> Z where removal
of any attribute from Y means the FD does not hold any
more

Examples:

= {SSN, PNUMBER}-> HOURS is a full FD since neither SSN
-> HOURS nor PNUMBER -> HOURS hold

= {SSN, PNUMBER}-> ENAME is not a full FD (it is called a
partial dependency) since SSN -> ENAME also holds

A relation schema R Is in second normal form
(2NF) if every non-prime attribute A in R is fully
functionally dependent on the primary key

R can be decomposed into 2NF relations via the
process of 2ZNF normalization

(a) Figure 10.10

EMP_PROJ Normalinng into 2NF and 3NF.
| Prurmbe Ename | Pran Ploc (a) Noemadzing EMP_PROJ into 2NF
(- I [Houn [I] ~] relaticns. (b) Normakzing EMP_DEPT

FD1 | i T A t into ANF relations.

Fo2|
FD3

2NF Normalization [

EP1 EP2 EP3
[Ssn [Prumber [Hours | | Sso [Ename | [Prumbee | Prame [Piocation |
FO1 ‘ t FD2) FD3| A 0
(b)
EMP_DEPT
[Ename ISm IBdato [Mdma]annbov IDmma IOmgr_un]
L S S S S S

I |

3NF Normalization

ED1 ED2
| Ename [Ssn [Bdate | Address | Doumber | | Dnumber | Doame | Dmgr ssn |
I S S S I

3.4 Third Normal Form (1)

s Definition:

« Transitive functional dependency: aFD X ->Z
that can be derived fromtwo FDs X ->Y and Y ->
Z

s Examples:

= SSN -> DMGRSSN is a transitive FD

= Since SSN -> DNUMBER and DNUMBER ->
DMGRSSN hold

= SSN -> ENAME is non-transitive

= Since there is no set of attributes X where SSN -> X
and X -> ENAME

4. What are Views in SQL? Discuss on methodologies to implement views in SQL. Explain with

an example.

A view is a single table that is derived from one or more base tables or other views .Views neither
exist physically nor contain data itself, it depends on the base tables for its existence A view contains
rows and columns, just like a real table. The fields in a view are fields from one or more real tables
in the database.

Specification of Views in SQL

Syntax:

CREATE VIEW view_name AS SELECT column_name(s) FROM table_name WHERE condition
Example

CREATE VIEW WORKS_ON1 AS SELECT Fname, Lname, Pname, Hours FROM EMPLOYEE,
PROJECT, WORKS_ON WHERE Ssn=Essn ANDPno=Pnumber ;

Retrieve the Last name and First name of all employees who work on ‘ProductX’

SELECT Fname, Lname FROM WORKS_ON1 WHERE Pname=‘ProductX’ ;

A view always shows up-to-date— If we modify the tuples in the base tables on which the view is
defined, the view must automatically— reflect these changes If we do not need a view any more, we
can use the DROP VIEW command— DROP VIEW WORKS_ON1;

View Implementation and View Update

View Implementation

The problem of efficiently implementing a view for quering is complex two main approaches have
been suggested

Modifying the view query into a query on the underlying base tables

Disadvantage: inefficient for views defined via complex queries that are time-consuming to
execute, especially if multiple queries are applied to the view within a short period of time.

Example
¢ The query example# would be automatically modified to the following query by the DBMS

SELECT Fname, Lname
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn=Essn ANDPno=Pnumber
AND Pname="ProductX’;
View Materialization
Physically create a temporary view table when the view is first queried
Keep that table on the assumption that other queries on the view will follow
Requires efficient strategy for automatically updating the view table when the base tables are updated, that
is Incremental Update
> Incremental Update determines what new tuples must be inserted, deleted, or modified in a materialized
view table when a change is applied to one of the defining base table
View Update
» Updating of views is complicated and can be ambiguous
» Anupdate on view defined on a single table without any aggregate functions can be mapped to an update or
the underlying base table under certain conditions.
» View involving joins, an update operation may be mapped to update operations on the underlying base
relations in multiple ways.
OBSERVATIONS ON VIEWS
O A view with a single defining table is updatable if the view attributes contain the primary key of the base
relation, as well as all attributes with the NOT NULL constraint that do not have default values specified
O Views defined on multiple tables using joins are generally not updatable
O Views defined using grouping and aggregate functions are not updatable
< In SQL, the clause WITH HECK OPTION must be added at the end of the view definition if a view is to be
updated.

V VYV §

R et g — IR o Gopetulioiibronsta it 0 0 aammeae — ot et s

Advantages of Views
» Data independence
» Currency
» Improved security
» Reduced complexity

» Convenience
» Customization

» Data integrity

5. Given the functional dependencies X= {A -> B, AB->C, D->AC, D->E} and Y={A ->BC,
D -> AE}, Explain whether these two sets of functional dependencies are equivalent.

EQUIVALENCE OF SETS OF FUNCTIONAL
DEPENDENCIES

E = {A—B, AB—C, D—AC, D—E}

F = {A—BC, D—AE}

e A set of functional dependencies Eand F is

Equivalent if
E covers Fand F covers E.

oE covers F means that all the Functional
dependency in F can be inferred from E, (i.e
\fl__v)hether E is covering functional dependencies of

og_c_més_gmeans that all the Functional
ependency in E can be inferred from F (i.e
whether F is covering functional dependencies of

E
| (< Q>

Computing F Covers E

e We can determine whether F covers E
by calculating X+ with respect to F for
each FD X—Y in E, and then checking
whether this X+ includes the attributes
inY

F={A->B, C=>E, DB}

E={C->D, D>E}

Compute C+ & D+ wrt F

Check C+ include D & D+ include E
N

|

e Given two sets F and E of FDs for a
relation.

E = {A—B, AB—C, D—AC,D—E}
F = {A—BC, D—AE}
Are the two'Sets equivalent?

Soln : if E =F then We have to check
whether E covers F and F covers E.

E Covers F
Given E = {A—B, AB—C, D—AC, D—E}
F = (A8Bc, D—AE)

A—BC D—AE
A+={ABC} D+={DACEB}
A+ includesBand C |D+ includes A and E

Therefore E covers F

E Covers F
Given E = {A—B, AB—C, D—AC, D—E }
F={a®Bc DoAE)

A—BC D—AE

A+ ={ABC} D+={DACEB}
A+ includes Band C |D+ includes A and E

Therefore E covers F

6. Let the given set of Functional Dependencies be X: {B->A, A->D, AB->D}. Find the minimal
cover of X.

MINIMAL COVER

e If a Functional Dependency F is given,
then F’ is Minimal cover of this FD set
if F' does not have

Redundant Attributes
> Redundant Functional Dependency

Steps

1. In Every Functional Dependency right hand side
must contain only single attribute

Aeg(i:f A —BC can be applied decomposition rule as A—B,
—

2. (a) If Functional Dependency has multiple attributes
on LHS, Remove Extraneous/redundant attributes
eg : if FD contains F' :{AB—C, ... A—C} the B can be
removed
(b) IF there is any trivial Functional Dependency , that can
be removed
Eg : {AB = B} is trivial since RHS & LHS have attributes in
common
3. Remove redundant Functional Dependency By using
the transitive rule
eg E {B-'A.D-*A.B-'D}
- By using the transitiveruleon B+ D and D — A, we
denve B — A I-ww is redundant and can be

Example 1

e Let the given set of FDs be E :
{B— A, A—D,AB— D}. Findthe
minimal cover of E.

Soln :

Step 1 : Check if RHS of Functional
Dependency contain only single attribute

Here All above dependencies have only
one attribute on the right-hand side , so
we have completed step 1.

E:{B*A,dw, AB — D}.

Step 2 : Check if LHS of Functional
Dependency has only single attributes

AB — D has two attributes on LHS.
Check whether it can be replaced by
B—D or A—D.

Thus A—D is redundant will not consider
so AB — D may be replaced by B — D.

E:B—A A—D B—D}

e Step 3 Remove redundant Functional
Dependency By using the transitive rule

¢ By using the transitive ruleon B — A
and A = D, we derive B— D Hence B —
D is redundant and can be removed

Therefore, the minimal cover of E is
= {B => Ao A =2 Do }

	Internal Assessment Test II – FEB 2024(SET3)
	1. What are triggers in SQL? Explain about Triggers in SQL with Suitable example.
	2. In the context of Embedded SQL, what is a cursor? How is it used, and what problem does it help to solve?
	Basic Cursor Definition and Usage
	FETCH sinfoINTO :c_sname, :c_age;
	4. What are Views in SQL? Discuss on methodologies to implement views in SQL. Explain with an example.
	Specification of Views in SQL Syntax:
	Example
	View Implementation and View Update View Implementation
	6. Let the given set of Functional Dependencies be X: {B->A, A->D, AB->D}. Find the minimal cover of X.

