USN					

Internal Assessment Test 1 – February 2024

Sub:	AUTOMATA THEORY AND COMPILER DESIGN Sub Code: 21CS51 Bra	nch: CSE			
Date:	Som /	V/ A, C		OBE	
	Answer any FIVE FULL Questions	MARKS	CO	RBT	
1 (a)	Write regular expression for the following language: (i) All strings containing no more than 3 a's over $\Sigma = \{a,b\}$. Ans: $b^*+b^*ab^*+b^*ab^*ab^*+b^*ab^*ab^*ab^*$	[5]	CO3	L3	
	(ii) $\{w \in \{0,1\}^*: w \text{ has } 101 \text{ or } 011 \text{ as a substring.}\}\$ Ans: $(0+1)*(101+011)(0+1)*$				
	(iii) {w∈{a,b}*: w doesn't end with bb or aa}Ans: (a+b)*(ab+ba)				
	(iv) $\{ w \in \{a,b\}^*: w \mod 5 = 0 \}$ Ans: $((a+b)^5)^*$				
	(v) $\{a^nb^m : n \le 3 \text{ and } m \ge 4\}$				
-	Ans: (E+a+aa+aa)bbbb(b)*	[5]	CO3	L3	
(b)	Convert the following FSM into a regular expression by state elimination method. Show the steps.	[5]	COS	L3	
	Ans: Step1: D is error state. Remove it Step2: Remove C and redraw the diagram				
	Step3: Remove B and redraw the diagram				
	R (00)*11(11)*= (00)*(11)+				
	Define distinguishable and indistinguishable states. Minimize the following DFSM. q1 q2 q3 q4 q4 q5 Ans:	[5]	CO1	L3	
	If X and Y are two states in a DFA, we can combine these two states into $\{X, Y\}$ if they are not distinguishable. Two states are distinguishable, if there is at least one string S, such that one of δ (X)				

	S) and δ (Y, S) is accepting and another is not accepting. Hence, a DFA is minimal if and only if all the states are distinguishable. Step 1 (q0,q2) (q1,q3,q4,q5) Step 2 (q0,q2) (q3,q4,q5) (q1) Step 3 (q0,q2) (q4) (q1) (q3,q5)			
(b)	Design a E-NFA to accept Unsigned numbers. For example: 1234, 23.56, 23.5E12,	[5]	CO3	L3
	25.E-2. Write the regular definition for it. Ans: start 12 digit 13 digit 15 E 16 + or 17 digit 18 other 19 * other other 21 * oth			
3 (a)	With a neat diagram explain the functions of different phases of a compiler. Show the output of each phase for the source code Result=b*5+c/2-d	[6]	CO2	L3

Ans:							
ECLO	SE(p)= {p,r,q}						
	SE(q)= {q}						
	SE(r)= {p,r,q}						
	State/Input	а	b				
	->*{p,q,r}	{p,q,r}	{p,q,r}				
	(p,q,r)						
^{5 (a)} Consi	der the following gr	rammar. Generat	e the LMD, RMD, and dra	w the parse tree	[8]	CO3	L3
for th	e string w= badba	baadb					
A→ B→ LME S=> =>b => b => b => b => b	AaAb DABaAb (A-) DABAB BAAb (A-) DABAB BAAB (B-)	→ d) → aB) → bBa)					
=>/ =>b/ =>b/ =>b/ =>b/	AaAb Aadb (A→ c >ABadb (A→ A aB adb (B → aB	bAB) bBa) (B → E) aAb)					

	Write an	equivalent unambiguous grammar for the given grammar.					
	E→E+E E	E-E E*E E/E (E) id					
	derivatio	rammar is said to be ambiguous if there exists more than one leftmost n or more than one rightmost derivation or more than one parse tree for n input string. If the grammar is not ambiguous, then it is called uous.					
	The inpu	t string is id+id-id					
	LMD1						
	E	$E \rightarrow E + E$					
		→ id + E					
		→ id + E - E					
		→ id + id - E					
		→ id + id- id					
	LMD2						
	1. E	→ E - E					
	2.	→ E + E - E					
	3.	→ id + E - E					
	4.	→ id + id - E					
	5.	→ id + id - id					
	Yes, it is	ambiguous.					
	Equivale	nt Unambiguous grammar:					
	E-> E+T	E-T T					
	T-> T*F	T/F F					
	F->(E)	id					
(b)	Write CF	G for the following language.	[4]	CO3	L3		
	(i)	$L={a^ib^jc^k \mid j=i+k \text{ and } i,k>=1}$					
	(ii)	L={W W is a palindrome and W \in {a,b}*}					
		Ans:					
		(i) S->AB					
		A->aAb ab					
		B-> bBc bc					
		(ii) S-> aSa bSb a b E					
	1			1			