

USN

Internal Assessment Test 1 – February 2024

Sub: AUTOMATA THEORY AND COMPILER DESIGN Sub Code: 21CS51 Branch: CSE

Date: 01/02/2024 Duration: 90 mins Max Marks: 50
Sem /

Sec:
V/ A, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Write regular expression for the following language:

(i) All strings containing no more than 3 a’s over Σ = {a,b}.
Ans: b*+b*ab*+ b*ab*ab*+ b*ab*ab*ab*

(ii) {w∈{0,1}*: w has 101 or 011 as a substring.}
Ans: (0+1)*(101+011)(0+1)*

(iii) {w∈{a,b}*: w doesn’t end with bb or aa}
Ans: (a+b)*(ab+ba)

(iv) { w∈{a,b}*: |w| mod 5 =0 }
Ans: ((a+b)5)*

(v) {anbm : n<=3 and m>=4}
Ans: (Ɛ+a+aa+aaa)bbbb(b)*

[5] CO3 L3

(b) Convert the following FSM into a regular expression by state elimination

method. Show the steps.

Ans:

Step1: D is error state. Remove it

Step2: Remove C and redraw the diagram

Step3: Remove B and redraw the diagram

R (00)*11(11)*= (00)*(11)+

[5] CO3 L3

2 (a) Define distinguishable and indistinguishable states. Minimize the following DFSM.

Ans:
If X and Y are two states in a DFA, we can combine these two states into {X, Y} if they are not

distinguishable. Two states are distinguishable, if there is at least one string S, such that one of δ (X,

[5] CO1 L3

S) and δ (Y, S) is accepting and another is not accepting. Hence, a DFA is minimal if and only if all

the states are distinguishable.

Step 1

(q0,q2) (q1,q3,q4,q5)

Step 2

(q0,q2) (q3,q4,q5) (q1)

Step 3

(q0,q2) (q4) (q1) (q3,q5)

(b) Design a Ɛ-NFA to accept Unsigned numbers. For example: 1234, 23.56, 23.5E12,

25.E-2. Write the regular definition for it.

Ans:

[5] CO3 L3

3 (a) With a neat diagram explain the functions of different phases of a compiler. Show

the output of each phase for the source code Result=b*5+c/2-d

[6] CO2 L3

Lexical Analyzer: The 1st Phase of a compiler is called lexical analysis or scanning.

The lexical analyzer reads the stream of characters making up the source program

and groups the characters into meaningful sequences called lexemes.

Syntax Analyzer: The parser uses the 1st components of the tokens produced by the

lexical analyzer to create a tree-like intermediate representation that depicts the

grammatical structure of the token stream.

Semantic Analyzer: The semantic analyzer uses the syntax tree and the information

in the symbol table to check the source program for semantic consistency with the

language definition.

Intermediate Code generation: We consider an intermediate form called three-

address code, which consists of a sequence of assembly-like instructions with three

operands per instruction.

Optimizer: The machine-independent code-optimization phase attempts to

improve the intermediate code so that better target code will result. Usually better

means faster, but other objectives may be desired, such as shorter code, or target

code that consumes less power.

Code Generator: The code generator takes as input an intermediate representation of

the source program and maps it into the target language. If the target language is

machine code, registers or memory locations are selected for each of the variables

used by the program. Then, the intermediate instructions are translated into

sequences of machine instructions that perform the same task.

(b) What is the role of lexical analyzer? Identify lexemes and tokens in the following

sequence of statements: int a=15; int b= a+10; printf (“b = %d”, b);

Ans:

[4] CO2 L2

The lexical analyzer is responsible for breaking these syntaxes into a
series of tokens, by removing whitespace in the source code.

i) A token is a pair a token name and an optional token value

 ex: keyword, identifier.-if else and num1,num2

A pattern is a description of the form that the lexemes of a token may take

 Ex: identifier: ([a-z]|[A-Z]) ([a-z]|[A-Z]|[0-9])*

A lexeme is a sequence of characters in the source program that matches the pattern

for a token.

ex: printf(“total = %d\n”, score);

both printf and score are lexemes matching the pattern for token id, and "Total =

%d\n” is a lexeme matching literal.

4(a) Construct an equivalent Ɛ-NFA using Kleene’s theorem for the regular expression:

(a (b ∪ abb) aa) *.

Ans:

[5] CO3 L3

(b) Convert the following Ɛ-NFA to DFA using subset construction method. Find the

ECLOSE of each state.

[5] CO1 L3

Ans:

ECLOSE(p)= {p,r,q}

ECLOSE(q)= {q}

ECLOSE(r)= {p,r,q}

State/Input a b

->*{p,q,r} {p,q,r} {p,q,r}

5 (a) Consider the following grammar. Generate the LMD, RMD, and draw the parse tree

for the string w= badbabaadb

S→ AaAb | BbBa
A→ aAb | bAB | d
B → aB|bBa | Ɛ

LMD:
S=> AaAb
 =>bABaAb (A→ bAB)
=> baAb BaAb (A→ aAb)
=> badb BaAb (A→ d)
=> badb aBaAb (B → aB)
=> badb abBaaAb (B → bBa)
=> badb ab Ɛ aaAb (B → Ɛ)
=> badb abaadb (A→ d)

RMD:
S=> AaAb
 =>Aadb (A→ d)
 =>bABadb (A→ bAB)
=>bAaBadb (B → aB)
=>bA abBa adb (B → bBa)
=>bA ab Ɛ a adb (B → Ɛ)
=>b aAb abaadb (A→ aAb)
=>b adb abaadb (A→ d)

[8] CO3 L3

(b) Explain the following terms with an example.

(i) Yield of a parse tree (ii) Sentential form

Yield of a parse tree : Concatenating the leaves of a parse tree from the left

produces a string of terminals. This string of terminals is called as yield of a
parse tree.

Sentential form: A sentential form is any string derivable from the start symbol.

Thus, in the derivation of a + a * a , E + T * F and E + F * a and F + a * a are all

sentential forms

[2] CO3 L1

6 (a) What is ambiguous grammar? Prove that the following grammar is ambiguous. [6] CO3 L3

Write an equivalent unambiguous grammar for the given grammar.

E→E+E |E-E |E*E|E/E |(E) |id

Ans: A grammar is said to be ambiguous if there exists more than one leftmost

derivation or more than one rightmost derivation or more than one parse tree for

the given input string. If the grammar is not ambiguous, then it is called

unambiguous.

The input string is id+id-id

LMD1

E → E + E

 → id + E

 → id + E - E

 → id + id - E

 → id + id- id

LMD2

1. E → E - E

2. → E + E - E

3. → id + E - E

4. → id + id - E

5. → id + id - id

Yes, it is ambiguous.

Equivalent Unambiguous grammar:

E-> E+T | E-T | T

T-> T*F | T/F |F

F-> (E) |id

(b) Write CFG for the following language.

(i) L={aibjck | j=i+k and i,k >=1}

(ii) L={W | W is a palindrome and W ∈{a,b}* }

Ans:

(i) S->AB

A->aAb | ab

B-> bBc | bc

(ii) S-> aSa | bSb | a | b | Ɛ

[4] CO3 L3

 CI CCI HOD

