

USN

Internal Assessment Test 2 – Jan 2024

Sub: Data Structures and Applications Sub Code: BCS304 Branch: CSE

Date: 20/1/2024 Duration: 90 mins Max Marks: 50 Sem / Sec: III(A,B & C) OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 List the advantages of circular queue over ordinary queue? With suitable C-

functions simulate the working of circular Queue of integers using Arrays.

Suppose a queue is maintained by a circular array queue with N=12 memory

cells. Find the number of elements in the queue if

i) FRONT =4 REAR =8

ii) FRONT =10 REAR = 3

iii) FRONT =5 REAR =6 and then two elements are deleted.

[10] CO2 L3

2 Write C functions to perform the following operations in a SLL:

i) Create a four node single linked list with data values 15,25,40,50

ii) Insert a node with data value ‘60’ at the end of the list.

iii) Insert a node with data value 30 in between the nodes 25 and 40

iv) Delete a node with data value ‘40’

v) Search node with data value ‘25’

[10] CO2 L3

3 Write algorithm and C functions to perform the following operations:

i. To count number of nodes in the singly linked list.

ii. To concatenate two singly linked list.

iii. Polynomial addition using SLL

[2+2+6 =

10]
CO3 L3

4 Describe the doubly linked list with advantages and disadvantages. Write

necessary C- functions with suitable diagrams to perform the following:

i. Insert a node at the front of DLL

ii. Delete a node from the front of DLL

iii. Insert a node from a DLL before a node with a given value.

iv. Delete a node from a DLL before a node with a given value.

[10] CO2 L2

5 Demonstrate the working of a linked stack with suitable diagram and explain the

following with suitable C – functions.

i. C – representation of the node of the linked Stack.

ii. Specify the underflow and overflow conditions.

iii. Operations that are performed on the stack.

[10] CO3 L2

CI CCI HOD

6 For the given sparse matrix, write the C-representation of the header and element

nodes. Represent the sparse matrix using linked list.

2 0 0 0
4 0 0 3
0 0 0 0
8 0 0 1
0 0 6 0

The reverse() function is supposed to reverse a singly linked list. One line is

missing at the end of the function.
struct node

{

int data;

struct node *next;

};

/ * head_refer is a double pointer that points to the head (or

start) pointer of linked list * /

void reverse(struct node** head_refer)

{

 struct node* prev = NULL;

 struct node* current = *head_refer;

 struct node* next;

 while (current != NULL)

 {

 next = current->next;

 current->next = prev;

 prev = current;

 current = next;

 }

 /*ADD A STATEMENT HERE*/

}

[10] CO3 L3

Internal Assessment Test 2 – Dec 2022 (Solution)

Sub: Data Structures and Applications Sub Code: 21CS32 Branch: CSE

Solution

Answer any FIVE FULL Questions
MARK

S

CO RB

T

1 Question:

List the advantages of circular queue over ordinary queue? With suitable C-

functions simulate the working of circular Queue of integers using Arrays.

Suppose a queue is maintained by a circular array queue with N=12 memory cells.

Find the number of elements in the queue if

i) FRONT =4 REAR =8 Answer : 4

ii) FRONT =10 REAR = 3 Answer : 5

iii) FRONT =5 REAR =6 and then two elements are deleted.

Answer:

Advantages of circular queue

• Easier for insertion-deletion: In the circular queue, elements can be inserted

easily if there are vacant locations until it is not fully occupied, whereas in

the case of a linear queue insertion is not possible once the rear reaches the

last index even if there are empty locations present in the queu

• Efficient utilization of memory: In the circular queue, there is no wastage

of memory as it uses the unoccupied space, and memory is used properly in

a valuable and effective manner as compared to a linear queue.

• Ease of performing operations: In the linear queue, FIFO is followed, so the

element inserted first is the element to be deleted first. This is not the

scenario in the case of the circular queue as the rear and front are not fixed

so the order of insertion-deletion can be changed, which is very useful.

With suitable C-functions simulate the working of circular Queue of integers using

Arrays.

#define capacity 6

int queue[capacity];

int front = -1, rear = -1;

// Here we check if the Circular queue is full or not

int checkFull ()

{

 if ((front == rear + 1) || (front == 0 && rear == capacity - 1))

 {

[10] CO2 L3

 return 1;

 }

 return 0;

}

// Here we check if the Circular queue is empty or not

int checkEmpty ()

{

 if (front == -1)

 {

 return 1;

 }

 return 0;

}

// Addtion in the Circular Queue

void enqueue (int value)

{

 if (checkFull ())

 printf ("Overflow condition\n");

 else

 {

 if (front == -1)

 front = 0;

 rear = (rear + 1) % capacity;

 queue[rear] = value;

 printf ("%d was enqueued to circular queue\n", value);

 }

}

// Removal from the Circular Queue

int dequeue ()

{

 int variable;

 if (checkEmpty ())

 {

 printf ("Underflow condition\n");

 return -1;

 }

 else

 {

 variable = queue[front];

 if (front == rear)

 {

 front = rear = -1;

 }

 else

 {

 front = (front + 1) % capacity;

 }

 printf ("%d was dequeued from circular queue\n", variable);

 return 1;

 }

}

// Display the queue

void print ()

{

 int i;

 if (checkEmpty ())

 printf ("Nothing to dequeue\n");

 else

 {

 printf ("\nThe queue looks like: \n");

 for (i = front; i != rear; i = (i + 1) % capacity)

 {

 printf ("%d ", queue[i]);

 }

 printf ("%d \n\n", queue[i]);

 }

}

i) FRONT =4 REAR =8 Answer : 4

ii) FRONT =10 REAR = 3 Answer : 5

iii) FRONT =5 REAR =6 and then two elements are deleted.

Q-1

0 1 2 3 4 5 6 7 8 9 10 11

 F R

Q-2

0 1 2 3 4 5 6 7 8 9 10 11

 R F

Q-3

0 1 2 3 4 5 6 7 8 9 10 11

 F R

2 Write C functions to perform the following operations in a SLL:

i) Assume a four node single linked list with data values 15,25,40,50

ii) Insert a node with data value ‘60’ at the end of the list.

iii) Insert a node with data value 30 in between the nodes 25 and 40

iv) Delete a node with data value ‘40’

v) Search node with data value ‘25’

Solution:

i) Assume a four node single linked list with data values 15,25,40,50

ii) Insert a node with data value ‘60’ at the end of the list.

[10] CO1 L3

iii) Insert a node with data value 30 in between the nodes 25 and 40

iv) Delete a node with data value ‘40’

v) Search node with data value ‘25’

3 Write C functions to perform the following operations in the SLL in figure below:

i. To count number of nodes in the given singly linked list.

ii. To reverse direction of singly linked list (as shown below).

iii. To concatenate the two singly linked list.

Count:

void print(){

 struct node* temp = head;

 int count=0;

 /* Traverse the linked list and maintain the count. */

 while(temp != NULL){

 temp = temp->next;

 count++;

 }

 printf("\n Total no. of nodes is %d",count);

}

Reverse a List

Concatenation:

void Concat(struct Node *first, struct Node *second)

{

 struct Node *p = first;

 while (p->next != NULL)

 {

[10] CO3 L3

rev

 p = p->next;

 }

 p->next = second;

 second = NULL;

}

4 Describe the doubly linked list with advantages and disadvantages. Write necessary

C- functions to perform the following:

i. Insert a node at the front of DLL

ii. Delete a node from the front of DLL

iii. Insert a node from a DLL before a node with a given value.

iv. Delete a node from a DLL before a node with a given value.

i. Insert a node at the front of DLL

ii. Delete a node from the front of DLL

iii. Insert a node from a DLL before a node with a given value.

iv. Delete a node from a DLL before a node with a given value.

[10] CO3 L2

5 Demonstrate the various operations performed in a Linked Stack with suitable C-

function.

[10] CO3 L2

6 For the given sparse matrix, write the C-representation of the header and element

nodes. Represent the sparse matrix using linked list.

2 0 0 0
4 0 0 3
0 0 0 0
8 0 0 1
0 0 6 0

The reverse() function is supposed to reverse a singly linked list. One line is

missing at the end of the function.
struct node

{

int data;

struct node *next;

};

/ * head_refer is a double pointer that points to the head (or

start) pointer of linked list * /

void reverse(struct node** head_refer)

{

 struct node* prev = NULL;

 struct node* current = *head_refer;

 struct node* next;

 while (current != NULL)

 {

 next = current->next;

 current->next = prev;

 prev = current;

 current = next;

 }

 /*ADD A STATEMENT HERE*/

}

Answer: head_ref=prev;

