USN |

Internal Assessment Test 2 — Jan 2024

(S YEARS

o
&

§ CMRIT

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.

ACCREDITED WITH A+ GRADE BY NAAC

Sub: | Data Structures and Applications Sub Code: | BCS304 ‘ Branch; ‘ CSE
Date: | 20/1/2024 | Duration: | 90mins | Max Marks: |50 | Sem/Sec: 1I(AB & C) OBE
Answer any FIVE FULL Questions MARKS | CO |RBT
1 List the advantages of circular queue over ordinary queue? With suitable C-
functions simulate the working of circular Queue of integers using Arrays.
Suppose a queue is maintained by a circular array queue with N=12 memory
cells. Find the number of elements in the queue if
) FRONT =4 REAR =8 [10] coz | L3
i) FRONT =10 REAR =3
iii) FRONT =5 REAR =6 and then two elements are deleted.
2 Write C functions to perform the following operations in a SLL:
)} Create a four node single linked list with data values 15,25,40,50
i) Insert a node with data value ‘60’ at the end of the list.
iii) Insert a node with data value 30 in between the nodes 25 and 40 [10] | CO2 | L3
iv) Delete a node with data value ‘40’
V) Search node with data value ‘25’
3 Write algorithm and C functions to perform the following operations:
I. To count number of nodes in the singly linked list. [2+2+46 =
ii. To concatenate two singly linked list. 10] CO3 | L3
iii. Polynomial addition using SLL
4 Describe the doubly linked list with advantages and disadvantages. Write
necessary C- functions with suitable diagrams to perform the following:
I. Insert a node at the front of DLL
ii. Delete a node from the front of DLL [10] Co2 | L2
iii. Insert a node from a DLL before a node with a given value.
v, Delete a node from a DLL before a node with a given value.
5 |Demonstrate the working of a linked stack with suitable diagram and explain the
following with suitable C — functions.
i. C—representation of the node of the linked Stack. [10] co3l L2

ii. Specify the underflow and overflow conditions.
iii. Operations that are performed on the stack.

For the given sparse matrix, write the C-representation of the header and element
nodes. Represent the sparse matrix using linked list.

2 0 0 O
4 0 0 3
0 0 0 O
8 0 0 1
0 0 6 0

The reverse() function is supposed to reverse a singly linked list. One line is

missing at the end of the function.
struct node

{
int data;
struct node *next;

bi

/ * head refer is a double pointer that points to the head (or
start) pointer of linked list * /

void reverse(struct node** head refer)

{

struct node* prev = NULL;
struct node* current = *head refer;
struct node* next;
while (current != NULL)
{
next = current->next;
current->next = prev;
prev = current;
current = next;

}
/*ADD A STATEMENT HERE*/

[10] |CO3

L3

CClI

HOD

Internal Assessment Test 2 — Dec 2022 (Solution)

(o EARS o

*

CMRIT

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.

ACCREDITED WITH A+ GRADE BY NAAC

Sub: | Data Structures and Applications ‘ Sub Code: ‘ 21CS32 ‘ Branch: ‘ CSE
Solution
Answer any FIVE FULL Questions M'AéRK cO RTB
1 Question:
List the advantages of circular queue over ordinary queue? With suitable C-
functions simulate the working of circular Queue of integers using Arrays.
Suppose a queue is maintained by a circular array queue with N=12 memory cells.
Find the number of elements in the queue if
i) FRONT =4 REAR =8 Answer : 4
i) FRONT =10 REAR = 3 Answer : 5
iii) FRONT =5 REAR =6 and then two elements are deleted.
Answer:
Advantages of circular queue
RE;\R \/
0
g 100
72 13 34 24 24 1
0 1 2 3 4 5 -
34 7
FRCT)NT RE&R 4 13 2\
x . FRONT
Insertion not possible ! Insertion possible !
e Easier for insertion-deletion: In the circular queue, elements can be inserted
easily if there are vacant locations until it is not fully occupied, whereas in | 1101 |co2| L3

the case of a linear queue insertion is not possible once the rear reaches the
last index even if there are empty locations present in the queu

e Efficient utilization of memory: In the circular queue, there is no wastage
of memory as it uses the unoccupied space, and memory is used properly in
a valuable and effective manner as compared to a linear queue.

e Ease of performing operations: In the linear queue, FIFO is followed, so the
element inserted first is the element to be deleted first. This is not the
scenario in the case of the circular queue as the rear and front are not fixed
so the order of insertion-deletion can be changed, which is very useful.

\With suitable C-functions simulate the working of circular Queue of integers using
Arrays.

#define capacity 6

int queue[capacity];
int front = -1, rear = -1;

/ Here we check if the Circular queue is full or not
int checkFull ()

{
if ((front ==rear + 1) || (front == 0 && rear == capacity - 1))

{

return 1;
}

return O;

by

/ Here we check if the Circular queue is empty or not
int checkEmpty ()

if (front == -1)
{

return 1;

¥

return O;

by

/ Addtion in the Circular Queue
\void enqueue (int value)

if (checkFull ()
printf ("Overflow condition\n");

else
{
if (front == -1)
front=0;

rear = (rear + 1) % capacity;
queue[rear] = value;
printf ("%d was enqueued to circular queue\n”, value);

ki
k

/ Removal from the Circular Queue

int dequeue ()

{

int variable;

if (checkEmpty ()
{

printf ("Underflow condition\n™);
return -1;

}

else

{

variable = queue[front];
if (front == rear)

{
front =rear = -1;
}
else
{
front = (front + 1) % capacity;
}
printf ("%d was dequeued from circular queue\n™, variable);
return 1;

¥

/ Display the queue
\void print ()
{
inti;
if (checkEmpty ())
printf ("Nothing to dequeue\n);
else

printf ("\nThe queue looks like: \n");
for (i = front; i !=rear; i = (i + 1) % capacity)

{
printf ("%d ", queue[i]);
}
printf ("%d \n\n", queueli]);

) FRONT =4 REAR =8 Answer : 4
i) FRONT =10 REAR = 3 Answer : 5
iii) FRONT =5 REAR =6 and then two elements are deleted.

Q-1
0 |1 [2 [3 [4 [5 [6 [7 [8 J9 [10 |11
F R
Q-2
0 |1 [2 [3 [4 [5 [6 [7 [8 J9 [10 [11
R F
Q-3
0o |1 [2 [3 [4 [5 [6 [7 [8 J9 [10 [11
F |R

Write C functions to perform the following operations in a SLL:
)] Assume a four node single linked list with data values 15,25,40,50
i) Insert a node with data value ‘60’ at the end of the list.

iii) Insert a node with data value 30 in between the nodes 25 and 40
iv) Delete a node with data value ‘40’

V) Search node with data value ‘25’

Solution:

)} Assume a four node single linked list with data values 15,25,40,50
i) Insert a node with data value ‘60’ at the end of the list.

[10]

Co1

L3

struct node *insert_end(struct node *start)

{
struct node *ptr, *new node;
int num;
printf(“\n Enter the data : *);
scanf(“%d"”, &num);
new _node = (struct node *)malloc(sizeof(struct no
new node -»> data = num;
new node -> next = NULL;
ptr = start;
while(ptr -» next != NULL)
ptr = ptr -> next;
ptr -»> next = new node;
return start;
¥

iii) Insert a node with data value 30 in between the nodes 25 and 40

struct node *insert_atter(struct node *start)
{
struct node *new_node, *ptr, *preptr;
int num, val;
printf(“\n Enter the data : “);
scanf(“%d”, &num);
printf(“\n Enter the value after which the data has to be inserted
scanf(“%d”, &val);
new _node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;
ptr = start;
preptr = ptr;
while(preptr -> data != val)
{
preptr = ptr;
ptr = ptr -> next;
}
preptr ->» next=new node;
new_node -» next = ptr;
return start;
1
iv) Delete a node with data value ‘40’
struct node *delete_node(struct node *start)
{
struct node *ptr, *preptr;
int val;
printf(“\n Enter the value of the node which has to be delet|
scanf(“%d”, &val);
ptr = start;
if(ptr -> data == val)

{
start = delete beg(start);
return start;

¥

else

I

while(ptr -» data != val)
{
preptr = ptr;
ptr = ptr -> next;
}
preptr -> next = ptr -> next;
free(ptr);
return start;

¥
¥

V) Search node with data value ‘25’

Write C functions to perform the following operations in the SLL in figure below:
I To count number of nodes in the given singly linked list.

ii. To reverse direction of singly linked list (as shown below).

iii. To concatenate the two singly linked list.

— A » B > C * D
Start

—l > C > B > A
rev
Count:

void print(){
struct node* temp = head;
int count=0;
[* Traverse the linked list and maintain the count. */
while(temp !'= NULL){

temp = temp->next;
count++;

¥

printf("\n Total no. of nodes is %d",count);

Reverse a List
void reverse()

{

f/ Initialize current, previous and next pointers
Node* current = head;
Node *prev = HNULL, *next = MNULL;

while (current != NULL) {
ff Store next
next = current->next;
// Reverse current node's pointer
current->next = prev;
// Move pointers one position ahead.
prev = current;
current = next,
¥
head = prev;

}

Concatenation:

void Concat(struct Node *first, struct Node *second)
{

struct Node *p = first;

while (p->next '= NULL)

{

[10]

CO3

L3

¥

p = p->next;

p->next = second;
second = NULL;

ky

Describe the doubly linked list with advantages and disadvantages. Write necessary

C- functions to perform the following:

iii.
iv.

Insert a node at the front of DLL

Delete a node from the front of DLL

Insert a node from a DLL before a node with a given value.
Delete a node from a DLL before a node with a given value.

Insert a node at the front of DLL
struct node *insert_beg(struct node *start)
{
struct node *new node;
int num;
printf("\n Enter the data : ");
scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node));

new_node —>data = num;

start — prev = new_node;
new node —> next = start;
new node —> prev = NULL;
start = new_node;
return start;
¥
Delete a node from the front of DLL
struct node *delete beg(struct node *start)

{
struct node *ptr;
ptr = start;
start = start-—> next;
start —= prev = NULL;
free(ptr);
return start;

}

Insert a node from a DLL before a node with a given value. -

struct node *insert_before(struct node *start)
{
struct node *new_node, *ptr;
int num, wval;
printf("\n Enter the data : ");
scanf("%d", &num);

printf("\n Enter the value before which the data has to be inserted:");

scanf("%d", &val);
new_node = (struct node *)malloc(sizeof(struct node));
new_node —>data = num;
ptr = start;
while(ptr —>data != val)

ptr = ptr—> next;
new_node —> next = ptr;
new_node —> prev = ptr—>prev;
ptr —> prev —> next = new_node;
ptr —>prev = new_node;
return start;

}
Delete a node from a DLL before a node with a given value.

[10]

CO3

L2

struct node *delete before(struct node *start)

{
struct node *ptr, *temp;
int val;
printf("\n Enter the value before which the node has to delet
scanf("%d", &val);
ptr = start;
while(ptr —>data != wval)
ptr = ptr —> next;
temp = ptr — prev;
if(temp == start)
start = delete beg(start);
else
{
ptr—>prev = temp —> prev;
temp —> prev —>next = ptr;
¥
free(temp);
return start;
}

Demonstrate the various operations performed in a Linked Stack with suitable C-
function.

3:‘: @ L‘S{“a clos onel c'_r weciuws nen Ginked

[lkcb‘: .-}a‘l ﬁ'TFMEHCQHm .' Ldﬁ_u C.a}[e_c{ "[’L_,_m Un !u_‘;‘, S‘L&.&[ﬁ_
W“-{ Olueum . .

e &T- .
\/

L
—
bt

;;y [inked steck.

©

'(-E'l-l me[-t&m ...{:cr abacl:
l lep[i)=NOLL 5 © £t <MAX-STACkS
T ,

Bounduy ol 2
| Le
. | ﬁrEfj; NULL tk% g!i_c_c[u. s e_rwgD A .

[10]

CO3

L2

2 [
T inal an Hem foa 3

2 Cggals = Fe e | L-”T I.,-:..mjl ralles '-H"-'.h-r.-q.
-:i-PI.n..-'_A i;ﬁp TR | Aats {-'L'.J u-w’-ﬁl-»-l 'I'L..L...h_:l.u.

‘!n‘j: #.on
|urri-A .I-.H,Ln:m{: elomad .,-;...,.'“j. _l.

'.

i'-"!l.-l"l':l ||

I s !-—';'- ',':!._—\--
l I.:'h'-f II-LLTT"B i el Irll‘-l: ﬂ-f"cﬂq. g_j'l--.r...
s ala = o hir |

4

| :E (Pﬂ'l:u Tdmns "|!E'ur_ "'T ELE-me.nf | C'L'nhj% {.T‘L:,

'H«k ardelrens o [tiesl in ils Link &—«‘cfﬂ[.

it
F

*® (TL_L ;M._.;] ede A "B-\--n f‘“—"—ﬂ{ b *"'Em (K3 I-lea.r_.[.

éﬂrn[ﬁmmt pep Gt 02 “ﬁbil
Slack lojf.f {&mf = tTf‘jJ

e le mand i{&rl'ﬂ_;
l,EC ' ic
I-LFLLM. JERCIFE""“H?]] -ﬂ

*“Tf‘

tery
Herm o Semp sdetes Q X]
_{Clﬁpii]: !erni? --Balt.fntl; L'SI’E‘
'f-n:_p_ (termp):
N | &
yelum ifem: | 5]

5

@

For the given sparse matrix, write the C-representation of the header and element
nodes. Represent the sparse matrix using linked list.

SO DN
S O O OO
o O OO O
SO = O WOo

The reverse() function is supposed to reverse a singly linked list. One line is

missing at the end of the function.
struct node

{
int data;
struct node *next;

b

/ * head refer is a double pointer that points to the head (or
start) pointer of linked list * /

void reverse(struct node** head refer)

{

struct node* prev = NULL;
struct node* current = *head refer;
struct node* next;
while (current != NULL)
{
next = current->next;
current->next = prev;
prev = current;

current = next;

}
/*ADD A STATEMENT HERE*/

Answer: head ref=prev,

