
   

 
 

Internal Assessment Test 2 Scheme and Solutions– November 2023 

Sub: Artificial Intelligence and Machine Learning – Set 2 Sub Code: 18CS71 Branch: ISE 

Date: 25-11-2023 Duration: 90 Minutes Max Marks: 50 Sem / Sec: 7 C OBE 

Answer any FIVE FULL Questions 
Marks 

Distribution 

Max 

Marks 

1  Finding the overall probabilities 

 Applying Naïve Bayes to calculate the conditional probabilities 

 Predicting the result 

 2 M  

6M 
2M 

10 M 

2  Finding the overall probabilities 

 Applying Naïve Bayes to calculate the conditional probabilities 

 Predicting the result 

 2 M  

6M 
2M 

10 M 

3 
 Explaining KNN algorithm for discrete values 

 Pseudo Code 

6 M 

4 M 

10 M 

4.a 

4.b 
 Explaining locally weighted regression with ex. 

 Explanation of Q-learning 

5 M 

5 M 

 

10 M 

5.a 

5.b 
 Bayesian belief networks explanation with example 

 EM algorithm explanation 

5 M 

5 M 

10 M 

6.a 

6.b 
 Explaining CADET system with example 

 Explanation of Radial Basis function  

6 M 

4 M 

 

10 M 

7.a 

7.b 

 Explanation of maximum likelihood hypothesis 

 Bayes theorem formula with all the terms explanation 

8M 

2M 

10 M 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    



   

SN Question Marks CO BT 

1  Classify the test data {Red, SUV, Domestic} using NAÏVE Bayes classifier for 

the dataset shown below. 

Color Type Origin Stolen 

Red Sports Domestic Yes 

Red Sports Domestic No 

Red Sports Domestic Yes 

Yellow Sports Domestic No 

Yellow Sports Imported Yes 

Yellow SUV Imported No 

Yellow SUV Imported Yes 

Yellow SUV Domestic No 

Red SUV Imported No 

Red Sports Imported Yes 
 

10 CO2 L3 

Solution: 

 

Our task is to predict the target value (yes or no) of the target concept Stolen for this new instance 

  

The probabilities of the different target values can easily be estimated based on their frequencies over the 10 

training examples. 

 P(Yes) = 5/10 = 0.5  
 P(No) = 5/10 = 0.5  

For new data {Red, SUV, Domestic} we need to classify the result 

   

 

 

 

= argmax P (Vj) * P (Red|Vj) * P (SUV|Vj) * P (Domestic|Vj), Vj ={Yes, No}  

 

Now we need to find the conditional probabilities for the test data w.r.t ‘Yes’ as mentioned below.    

 P(Red|Vj=Yes) = 3/5 = 0.6  
 P(SUV|Vj=Yes) = 1/5 = 0.2  
 P(Domestic|Vj=Yes) = 2/5 = 0.4  

Now we need to find the conditional probabilities for the test data w.r.t ‘No’as mentioned below.  

 P(Red|Vj=No) = 2/5 = 0.4  
 P(SUV|Vj=No) = 3/5 = 0.6  
 P(Domestic|Vj=No) = 3/5 = 0.6 

 

Finally for the test data we have the formula as below. 

 

 

 

 

VNB {Yes} = P (Yes)*P (Red|Yes)*P (SUV|Yes)*P (Domestic|Yes) = 0.5*0.6*0.2*0.4 = 0.024  

 

VNB {No} = P (No)* P (Red|No)*P (SUV|No)*P (Domestic|No) = 0.5*0.4*0.6*0.6 = 0.072  

 

So for new data {Red, SUV, Domestic} the result is No 
 

 2 Estimate the conditional probability of each attributes  

{Color, Legs, Height, Smell} for the species class {M, H} using the data given 

in the table. Using these probabilities estimate the probabilities values for the 

new instance 

{Color=Green, Legs=2,Height=Tall and Smelly=No} 

10 CO2 L3 



   

SN Color Legs Height Smell Species 

1 White 3 Short Yes M 

2 Green 2 Tall No M 

3 Green 3 Short Yes M 

4 White 3 Short Yes M 

5 Green 2 Short No H 

6 White 2 Tall No H 

7 White 2 Tall No H 

8 White 2 Short Yes H 
 

Solution: 

Our task is to predict the target value (M or H) of the target concept Species for this new instance 

  

The probabilities of the different target values can easily be estimated based on their frequencies over the 10 

training examples. 

 P(M) = 4/8 = 0.4  
 P(H) = 4/8 = 0.4  

For new data {Green, 2, Tall, No} we need to classify the result 

   

 

 

 

= argmax P (Vj) * P (Green|Vj) * P (2|Vj) * P (Tall|Vj)*P(No|Vj), Vj ={M, H}  

 

Now we need to find the conditional probabilities for the test data w.r.t ‘M’ as mentioned below.    

 P(Green|Vj=M) = 2/4  
 P(2|Vj=M) = 1/4  
 P(Tall|Vj=M) = 1/4  
 P(No|Vj=M) = 1/4  

Now we need to find the conditional probabilities for the test data w.r.t ‘H’as mentioned below.  

 P(Green|Vj=H) = 1/4  
 P(2|Vj=H) = 4/4  
 P(Tall|Vj=H) = 2/4  
 P(No|Vj=H) = 3/4  

 

Finally for the test data we have the formula as below. 

 

 

 

 

VNB {M} = P (M)*P (Green|M)*P (2|M)*P (Tall|M) *P(No|M) = 2/4*1/4*1/4*1/4 

VNB {H} = P (H)*P (Green|H)*P (2|H)*P (Tall|H) *P(No|H) = 1/4*4/4*2/4*3/4 

So for new data {Green, 2,Tall,No} the result is H 

 

3 Explain the K – nearest neighbor algorithm for approximating a discrete – 

valued function f-> Rn-V with pseudo code. 

10 CO3 L2 

Solution: 



   

 
Pseudo Code: 

 
1. Load the data 

2. Initialize the value of k 

3. For getting the predicted class, iterate from 1 to total number of training data points 

1. Calculate the distance between test data and each row of training data. Here we will use Euclidean 

distance as our distance metric since it’s the most popular method. The other metrics that can be 

used are cosine, etc. 

2. Sort the calculated distances in ascending order based on distance values 

3. Get top k rows from the sorted array 

4. Get the most frequent class of these rows 

5. Return the predicted class 

4.a Explain locally weighted linear regression with an example. 5 CO3 L2 

Solution: 

 



   

Example 

 Consider a query point x = 5.0 and let x^{(1)} and x^{(2) be two points in the training set such that  

x^{(1)} = 4.9 and x^{(2)} = 3.0. 

Using the formula w^{(i)} = exp(frac{-(x^{(i)} - x)^2}{2tau^2}) with tau = 0.5: 

w^{(1)} = exp(frac{-(4.9 - 5.0)^2}{2(0.5)^2}) = 0.9802 

w^{(2)} = exp(frac{-(3.0 - 5.0)^2}{2(0.5)^2}) = 0.000335 

 So, J(theta) = 0.9802*(theta^Tx^{(1)} - y^{(1)}) + 0.000335*(theta^Tx^{(2)} - y^{(2)}) 

Thus, the weights fall exponentially as the distance between x and x^{(i)} increases and so does the 

contribution of error in prediction for x^{(i)} to the cost. 

Consequently, while computing theta, we focus more on reducing (theta^Tx^{(i)} - y^{(i)})^2 for the points 

lying closer to the query point (having larger value of w^{(i)}). 

 

Steps involved in locally weighted linear regression are: 

 Compute theta to minimize the cost. J(theta) = $sum_{i=1}^{m} w^{(i)}(theta^Tx^{(i)} - y^{(i)})^2. 

 Predict Output: for given query point x, 

 return: theta^Tx 

4.b Write a note on Q-learning. 5M CO3 L2 

Solution: 



   

 
 

 
 

5.a Explain Bayesian Belief Networks and conditional independence with 

example. 

6M CO3 L2 

Solution: 

A Bayesian belief network describes the probability distribution governing a set of variables by specifying a set 

of conditional independence assumptions along with a set of conditional probabilities. 

Bayesian belief networks allow stating conditional independence assumptions that apply to subsets of the 

variables 

Representation 
A Bayesian belief network represents the joint probability distribution for a set of variables. 

Bayesian networks (BN) are represented by directed acyclic graphs. 



   

 
 
The Bayesian network in above figure represents the joint probability distribution over the boolean variables 

Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup 

A Bayesian network (BN) represents the joint probability distribution by specifying a set of conditional 

independence assumptions. 

 
 BN represented by a directed acyclic graph, together with sets of local conditional probabilities. 

 Each variable in the joint space is represented by a node in the Bayesian network. 

 The network arcs represent the assertion that the variable is conditionally independent of its non-
descendants in the network given its immediate predecessors in the network. 

 A conditional probability table (CPT) is given for each variable, describing the probability distribution 
for that variable given the values of its immediate predecessors.  

 
The joint probability for any desired assignment of values (y1, . . . , yn) to the tuple of network variables (Y1 . . . Ym) can 

be computed by the formula  

 
Where, Parents(Yi) denotes the set of immediate predecessors of Yi in the network. 

 

Example: 
Consider the node Campfire. The network nodes and arcs represent the assertion that Campfire is conditionally 

independent of its non-descendants Lightning and Thunder, given its immediate parents Storm and BusTourGroup. 

 

This means that once we know the value of the variables Storm and BusTourGroup, the variables Lightning and 

Thunder provide no additional information about Campfire The conditional probability table associated with the 

variable Campfire. The assertion is 

P(Campfire = True | Storm = True, BusTourGroup = True) = 0.4 

5.b Explain the EM Algorithm in detail. 4M CO3 L2 



   

Solution: 

 

 

 

 

 
6.a Explain the CADET System with Case based reasoning with example. 6 CO2 L1 

Solution: 

Case-based reasoning (CBR) is a learning paradigm based on lazy learning methods and they classify new query instances 

by analysing similar instances while ignoring instances that are very different from the query. 

In CBR represent instances are not represented as real-valued points, but instead, they use a rich symbolic representation. 

CBR has been applied to problems such as conceptual design of mechanical devices based on a stored library of previous 

designs, reasoning about new legal cases based on previous rulings, and solving planning and scheduling problems by 

reusing and combining portions of previous solutions to similar problems 

 

A prototypical example of a case-based reasoning 

The CADET system employs case-based reasoning to assist in the conceptual design of simple mechanical devices such 

as water faucets. 

It uses a library containing approximately 75 previous designs and design fragments to suggest conceptual designs to 

meet the specifications of new design problems. 

Each instance stored in memory (e.g., a water pipe) is represented by describing both its structure and its qualitative 

function. 

New design problems are then presented by specifying the desired function and requesting the corresponding structure. 

 

The problem setting is illustrated in below figure 



   

 

 

The function is represented in terms of the qualitative relationships among the water- flow levels and temperatures at its 

inputs and outputs. 

In the functional description, an arrow with a "+" label indicates that the variable at the arrowhead increases with the variable 

at its tail. A "-" label indicates that the variable at the head decreases with the variable at the tail. 

 Here Qc refers to the flow of cold water into the faucet, Qh to the input flow of hot water, and Qm to the single mixed 

flow out of the faucet. 

 Tc, Th, and Tm refer to the temperatures of the cold water, hot water, and mixed water respectively. 

 The variable Ct denotes the control signal for temperature that is input to the faucet, and Cf denotes the control 

signal for waterflow. 

 The controls Ct and Cf are to influence the water flows Qc and Qh, thereby indirectly influencing the faucet output 

flow Qm and temperature Tm. 

CADET searches its library for stored cases whose functional descriptions match the design problem. If an exact match is 

found, indicating that some stored case implements exactly the desired function, then this case can be returned as a 

suggested solution to the design problem. If no exact match occurs, CADET may find cases that match various subgraphs 

of the desired functional specification. 

6.b Write a note on Radial basis function. 4 CO2 L1 

Solution: 

Given a set of training examples of the target function, RBF networks are typically trained in a two-stage 

process. 

1. First, the number k of hidden units is determined and each hidden unit u is defined by choosing the values of xu 

and 𝜎u
2 that define its kernel function Ku(d(xu, x)) 

2. Second, the weights w, are trained to maximize the fit of the network to the training data, using the global error 

criterion given by 

Because the kernel functions are held fixed during this second stage, the linear weight values w, can be 

trained very efficiently 



   

 

Several alternative methods have been proposed for choosing an appropriate number of hidden units or, 

equivalently, kernel functions. 

 One approach is to allocate a Gaussian kernel function for each training example (xi,f (xi)), centring this 

Gaussian at the point xi. Each of these kernels may be assigned the same width 𝜎2.  

 A second approach is to choose a set of kernel functions that is smaller than the number of training 

examples. This approach can be much more efficient than the first approach, especially when the number 

of training examples is large. 

7.a Explain maximum likelihood hypothesis for predicting probabilities. 

 

8 CO3 L1 

Solution: 

Consider the setting in which we wish to learn a nondeterministic (probabilistic) function  

f : X → {0, 1}, which has two discrete output values.   

We want a function approximator whose output is the probability that f(x) = 1. In  other words, learn the target function f 

` : X → [0, 1] such that f ` (x) = P(f(x) = 1)   

∙ First obtain an expression for P(D|h)     

∙ Assume the training data D is of the form D = {(x1, d1) . . . (xm, dm)}, where di is  the observed 0 or 1 value 

for f (xi).   

∙ Both xi and di as random variables, and assuming that each training example is  drawn independently, we 

can write P(D|h) as   

 
Applying the product rule 

The probability P(di|h, xi)  

Re-express it in a more mathematically manipulable form, as  

 

Equation (4) to substitute for P(di |h, xi) in Equation (5) to obtain  

 
We write an expression for the maximum likelihood hypothesis  



   

 

The last term is a constant independent of h, so it can be dropped  

 
7.b Write Bayes Theorem and explain the notations used. 2 CO3 L1 

Solution: 

Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior probability, the probabilities of 

observing various data given the hypothesis, and the observed data itself.  

Notations  

∙ P(h) prior probability of h, reflects any background knowledge about the chance that h  is correct   
∙ P(D) prior probability of D, probability that D will be observed     

∙ P(D|h) probability of observing D given a world in which h holds     

∙ P(h|D) posterior probability of h, reflects confidence that h holds after D has been  observed   

 

Bayes theorem is the cornerstone of Bayesian learning methods because it provides a way to calculate the posterior 

probability P(h|D), from the prior probability P(h), together with P(D)  and P(D|h).  

 
     

 
 


