

USN

Internal Assessment Test 2 – January 2024

Sub: Operating Systems Sub Code: BCS303 Branch: ISE

Date: 18/1/2024 Duration: 90 min’s Max Marks: 50 Sem/Sec: III A, B & C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 Consider the following set of processes, with the length of the CPU burst is given below

in milliseconds. The processes are assumed to have arrived in the order P1, P2,P3. Draw

a Gantt Chart and calculate the average waiting time and average turnaround time for all

processes using Round Robin (quantum = 2 ms) (6 marks) and SJF(4 marks).

Process Arrival Burst

P1 0 5

P2 1 10

P3 2 2

P4 3 1

10 CO2 L3

2.a Differentiate Multilevel Queue Scheduling and Multilevel Feedback Queue Scheduling

5 differences – 5 marks

5 CO2 L2

2.b Explain the requirements to solve Critical Section Problem

Conditions – 5 marks

5 CO3 L2

3 Outline a solution using Semaphores to solve Dining Philosopher’s Problem

Problem definition : 2 marks

Philosopher Code : 3 marks

Semaphore solution with explanation : 5 marks

10 CO3 L2

4.a Explain the several data structures maintained to encode the state of a resource with

several instances.

Four data structures : 4

4 CO3 L2

4.b Derive the algorithm using test-and –set () instruction that satisfy all the critical section

requirements.

Definition Test() and Set() :2 marks

Mutual Exclusion / Bounded wait Mutual Exclusion algorithm with explanation : 4 marks

6 CO3 L2

5.a Consider the below given resource- allocation graph in which all resources have only one

instance. Determine whether the system has deadlock or not by using deadlock detection

algorithm. Illustrate the process with a neat sketch.

Process Explanation : 3

Wait For Graph : 2

Deadlock / No deadlock : 1

6 CO2 L3

5.b Explain Process Termination to eliminate deadlocks

Causes : 4 marks

4 CO3 L2

6 Consider the following system snapshot using data structures in the Banker’s algorithm

with resources A, B, C and D and process P0 to P4:

10 CO3 L3

Solution

1,

Round Robin :

SJF:

Non Preemptive

Using Banker’s algorithm, answer the following questions:

(i) What are the contents of Need Matrix? (2 marks)

(ii) Is the in a safe state? (2 marks) Explain the algorithm and determine safe

sequence order in which the processes completes its execution?(6 marks)

Preemptive

2a.

Multilevel queue scheduling (MLQ)

Multilevel feedback queue scheduling

(MLFQ)

It is queue scheduling algorithm in which ready

queue is partitioned into several smaller queues and

processes are assigned permanently into these

queues.

In this algorithm, ready queue is partitioned

into smaller queues on basis of CPU burst

characteristics.

The processes are divided on basis of their intrinsic

characteristics such as memory size, priority etc.

The processes are not permanently allocated

to one queue and are allowed to move

between queues.

In this algorithm queue are classified into two

groups, first containing background processes and

second containing foreground processes.

Here, queues are classified as higher priority

queue and lower priority queues. If process

takes longer time in execution it is moved to

lower priority queue.

Multilevel queue scheduling (MLQ)

Multilevel feedback queue scheduling

(MLFQ)

The priority is fixed in this algorithm.
The priority for process is dynamic as

process is allowed to move between queue.

Since, processes do not move between queues, it

has low scheduling overhead and is inflexible.

Since, processes are allowed to move

between queues, it has high scheduling

overhead and is flexible.

2b.

Critical section problem may be resolved by satisfying the following three requirements:

• Mutual Exclusion: If a process is executing in its critical section, then no other process is

allowed to execute in the critical section.

• Progress: If no process is executing in the critical section and other processes are waiting

outside the critical section, then only those processes that are not executing in their

remainder section can participate in deciding which will enter the critical section next, and

the selection cannot be postponed indefinitely.

• Bounded Waiting: A bound must exist on the number of times that other processes are

allowed to enter their critical sections after a process has made a request to enter its critical

section and before that request is granted.

3.Dining Philosopher Problem:

• The dining philosopher's problem is the classical problem of synchronization which says that

Five philosophers are sitting around a circular table and their job is to think and eat alternatively.

• A bowl of noodles is placed at the center of the table along with five chopsticks for each of the

philosophers. To eat a philosopher needs both their right and a left chopstick.

• A philosopher can only eat if both immediate left and right chopsticks of the philosopher is

available. In case if both immediate left and right chopsticks of the philosopher are not available

then the philosopher puts down their (either left or right) chopstick and starts thinking again.

• The dining philosopher demonstrates a large class of concurrency control problems hence it's a

classic synchronization problem.

Solution :

1. Initialize the semaphores for each fork to 1 (indicating that they are available).

2. Initialize a binary semaphore (mutex) to 1 to ensure that only one philosopher can attempt to pick

up a fork at a time.

3. For each philosopher process, create a separate thread that executes the following code:

• While true:

• Think for a random amount of time.

• Acquire the mutex semaphore to ensure that only one philosopher can

attempt to pick up a fork at a time.

• Attempt to acquire the semaphore for the fork to the left.

• If successful, attempt to acquire the semaphore for the fork to the right.

• If both forks are acquired successfully, eat for a random amount of time and then

release both semaphores.

• If not successful in acquiring both forks, release the semaphore for the fork to the left

(if acquired) and then release the mutex semaphore and go back to thinking.

4. Run the philosopher threads concurrently.

4a)

Several data structures must be maintained to implement the banker's algorithm. These data structures

encode the state of the resource-allocation system. We need the following data structures, where n is

the number of processes in the system and m is the number of resource types:

Available: A vector of length m indicates the number of available resources of each type. If

Available[j] equals k, then k instances of resource type Ri are available.

Max: An n x m matrix defines the maximum demand of each process. If Max[i] [j] equals k, then

process P; may request at most k instances of resource type Ri.

Allocation: An 11 x m matrix defines the number of resources of each type currently allocated to

each process. If Allocation[i][j] equals lc, then process P; is currently allocated lc instances of

resource type Rj.

Need: An n x m matrix indicates the remaining resource need of each process. If Need[i][j] equals k,

then process P; may need k more instances of resource type Ri to complete its task. Note that

Need[i][j] equals Max[i][j] - Allocation [i][j].

These data structures vary over time in both size and value.

4b.

Definition:

Mutual Exclusion

Bounded – Waiting Mutual Exclusion:

5a.

Algorithm:

Step 1: Take the first process (Pi) from the resource allocation graph and check the path in which it

is acquiring resource (Ri), and start a wait-for-graph with that particular process.

Step 2: Make a path for the Wait-for-Graph in which there will be no Resource included from the

current process (Pi) to next process (Pj), from that next process (Pj) find a resource (Rj) that will be

acquired by next Process (Pk) which is released from Process (Pj).

Step 3: Repeat Step 2 for all the processes.

Step 4: After completion of all processes, if we find a closed-loop cycle then the system is in a

deadlock state, and deadlock is detected.

 No cycle, therefore No Deadlock.

5b.

To eliminate the deadlock, we can simply kill one or more processes. For this, we use two methods:

1. Abort all the Deadlocked Processes: Aborting all the processes will certainly break

the deadlock but at a great expense. The deadlocked processes may have been

computed for a long time, and the result of those partial computations must be

discarded and there is a probability of recalculating them later.

2. Abort one process at a time until the deadlock is eliminated: Abort one deadlocked

process at a time, until the deadlock cycle is eliminated from the system. Due to this

method, there may be considerable overhead, because, after aborting each process, we

have to run a deadlock detection algorithm to check whether any processes are still

deadlocked.

6)

(i) Need Matrix

A B C D

0 0 0 0

0 7 5 0

1 0 0 2

0 0 2 0

0 6 4 2

(ii) The system is not in safe state.

Algorithm :

https://www.geeksforgeeks.org/introduction-of-deadlock-in-operating-system/
https://www.geeksforgeeks.org/deadlock-detection-algorithm-in-operating-system/

Safety Sequence order:

P0→P2→P3→P4→P1

