

USN

Internal Assessment Test 2 – January 2024

SCHEME AND SOLUTION

Sub: Operating Systems Sub Code: BCS303 Branch: CSE

Date: 19/01/24 Duration: 90 minutes Max Marks: 50 Sem / Sec: III / A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a

 What is Critical Section Problem? Draw the general structure of a process with

critical section. If you are to provide a solution for Critical Section Problem, explain

the requirements that you have to satisfy.

 Consider a system consisting of 11 processes {Po, PI, ... , Pn-1}. Each process

has a segment of code, called a critical section, in which the process may be

changing common variables, updating a table, writing a file, and so on.

 The important feature is that, when one process is executing in its critical

section, no other process is to be allowed to execute in its critical section. i.e.,

no two processes are executing in their critical sections at same time.

 The critical-section problem is to design a protocol that the processes can use

to cooperate.

 Each process must request permission to enter its critical section.

 The section of code implementing this request is the entry section.

 The critical section may be followed by an exit section.

 The remaining code is the remainder section.

1. Mutual Exclusion - If process Pi is executing in its critical section, then no

other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist some

processes that wish to enter their critical section, then the selection of the

processes that will enter the critical section next cannot be postponed indefinitely

[5] 2 L2

3. Bounded Waiting - A bound must exist on the number of times that other

processes are allowed to enter their critical sections after a process has made a

request to enter its critical section and before that request is granted

b

Write the logic of using locks to solve Critical Section Problem. Explain how

Swapping helps to solve the CSP

 void Swap (boolean *a, boolean *b)

 {

 boolean temp = *a;

 *a = *b;

 *b = temp:

 }

Shared Boolean variable lock initialized to FALSE;

Each process has a local Boolean variable key.

Solution:

 do {

 key = TRUE;

 while (key == TRUE)

 Swap (&lock, &key);

 // critical section

 lock = FALSE;

 // remainder section

 } while (TRUE);

[5] 2 L3

2 a

Explain in detail about Semaphore as a Synchronization tool.

Semaphore is a synchronization tool that controls the access to shared resources

among multiple processes. It limits the number of processes that can access the

resource simultaneously, preventing data inconsistencies.

Semaphore S – integer variable

Two standard operations modify S:

Wait () and signal ()

Originally called P() and V()

Less complicated

[5] 2 L2

Can only be accessed via two indivisible (atomic) operations

wait (S)

{

 while S <= 0;

 //No Operation

 S--;

 }

signal (S)

{

S++;

}

b

In a multi-threaded environment, different processes may need to access shared

resources concurrently. This could lead to conflicts & potential data inconsistency.

Propose a synchronization mechanism that allows multiple readers simultaneous

access to shared data while ensuring exclusive access for a single writer. Discuss

how this approach avoids race conditions and guarantees data consistency.

 Shared Data

o Data set

o Semaphore mutex initialized to 1.

o Semaphore wrt initialized to 1.

o Integer readcount initialized to 0.

 The structure of a writer process

 do {

 wait (wrt) ;

 // writing is performed

 signal (wrt) ;

 } while (true)

 The structure of a reader process

 do {

 wait (mutex) ;

 readcount ++ ;

 if (readcount == 1) wait (wrt) ;

 signal (mutex)

 // reading is performed

 wait (mutex) ;

[5] 2 L2

 readcount - - ;

 if (readcount == 0) signal (wrt) ;

 signal (mutex) ;

 } while (true)

3 a

What are Monitors? Help the Dining Philosophers to solve the problem of

synchronization using Monitors.

Monitors are high-level synchronization constructs that encapsulate shared data and

the operations that can be performed on that data in a single unit called a monitor.

[5] 2 L2

b

Consider the traffic depicted in the figure.

What is a deadlock? Show that the four necessary conditions for deadlock indeed

hold in this example.

1. Mutual exclusion: only one process at a time can use a resource.

2. Hold and wait: a process holding at least one resource is waiting to acquire

additional resources held by other processes.

3. No preemption: a resource can be released only voluntarily by the process

holding it, after that process has completed its task.

4. Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such

that P0 is waiting for a resource that is held by P1, P1 is waiting for a

resource that is held by P2, …, Pn–1 is waiting for a resource that is held by

Pn, and Pn is waiting for a resource that is held by P0.

[5] 2 L2

4 a

 What is Resource Allocation Graph? Explain how RAG is very useful in

describing deadlock by considering own example.

[5] 2 L3

 If graph contains no cycles no deadlock.

 If graph contains a cycle

o if only one instance per resource type, then deadlock.

o if several instances per resource type, possibility of deadlock.

b

Process

Allocation Max Available

A B C A B C A B C

P0 0 0 2 0 0 4 1 0 2

P1 1 0 0 2 0 1

P2 1 3 5 1 3 7

P3 6 3 2 8 4 2

P4 1 4 3 1 5 7

Answer the following questions using the banker's algorithm:

(i) Can a request (0,0,2) from process P2 be granted immediately?

[5] 2 L3

5

a

In a complex computer system with multiple interconnected processes, occasional

resource conflicts may occur, leading to a situation where processes are unable to

progress. Describe the measures that can be taken to resolve such conflicts and

bring the system back to a stable state.

[5] 2 L2

b

Consider the process of preparing a program for execution, where instructions and

data need to be associated with specific memory locations. Discuss the different

stages with neat diagram, that can be employed to establish this association,

ensuring efficient and reliable execution of the program.

Address binding of instructions and data to memory addresses can

happen at three different stages

 Compile time: If memory location known a priori, absolute code can

be generated; must recompile code if starting location changes

[5] 2 L2

 Load time: Must generate relocatable code if memory location is not

known at compile time

 Execution time: Binding delayed until run time if the process can be

moved during its execution from one memory segment to another.

Need hardware support for address maps (e.g., base and limit registers).

6 a

Define the following.

(i) Logical Address and Physical Address

Logical address – generated by the CPU; also referred to as virtual address

Physical address – address seen by the memory unit

(ii) Hole

Hole – block of available memory; holes of various size are scattered throughout

memory

(iii)First fit and Best fit

First-fit: Allocate the first hole that is big enough

Best-fit: Allocate the smallest hole that is big enough; must search entire list,

unless ordered by size. Produces the smallest leftover hole.

(iv) External Fragmentation

External Fragmentation – total memory space exists to satisfy a request, but it is

not contiguous

(v) Internal Fragmentation

Internal Fragmentation – allocated memory may be slightly larger than requested

memory; this size difference is memory internal to a partition, but not being used

[5] 3 L2

b

Consider the resource allocation graph in the figure-

 Find if the system is in a deadlock state otherwise find a safe sequence.

 The given resource allocation graph is multi instance with a cycle contained in it.

 So, the system may or may not be in a deadlock state.

Using the given resource allocation graph, we have-

Process Allocation Need

 R1 R2 R3 R1 R2 R3

P0 1 0 1 0 1 1

P1 1 1 0 1 0 0

P2 0 1 0 0 0 1

P3 0 1 0 0 2 0

Available = [R1 R2 R3] = [0 0 1]

Step-01:

 With the instances available currently, only the requirement of the process P2 can

be satisfied.

 So, process P2 is allocated the requested resources.

 It completes its execution and then free up the instances of resources held by it.

[5] 2 L3

Then-

Available

= [0 0 1] + [0 1 0]

= [0 1 1]

Step-02:

 With the instances available currently, only the requirement of the process P0 can

be satisfied.

 So, process P0 is allocated the requested resources.

 It completes its execution and then free up the instances of resources held by it.

Then-

Available

= [0 1 1] + [1 0 1]

= [1 1 2]

Step-03:

 With the instances available currently, only the requirement of the process P1 can

be satisfied.

 So, process P1 is allocated the requested resources.

 It completes its execution and then free up the instances of resources held by it.

Then-

Available

= [1 1 2] + [1 1 0]

= [2 2 2]

Step-04:

 With the instances available currently, the requirement of the process P3 can be

satisfied.

 So, process P3 is allocated the requested resources.

 It completes its execution and then free up the instances of resources held by it.

Then-

Available

= [2 2 2] + [0 1 0]

= [2 3 2]

Thus,

 There exists a safe sequence P2, P0, P1, P3 in which all the processes can be

executed.

 So, the system is in a safe state.

CI CCI HoD

--All the Best--

CO-PO Mapping

Course Outcomes
Modules

covered

P

O

1

P

O

2

P

O

3

P

O

4

P

O

5

P

O

6

P

O

7

P

O

8

P

O

9

P

O

1

0

P

O

1

1

P

O

1

2

P

S

O

1

P

S

O

2

P

S

O

3

P

S

O

4

CO1
Describe the Operating System

Structure and Services.
1 3 - - - - - - - - - - 3 - 2 - -

CO2

Summarize the Process

Management concepts like

Processes, Threads, CPU

Scheduling, Process

Synchronization and Deadlocks

1, 2 3 2 2 - - - - - - - - 3 - 2 - -

CO3

Interpret the Memory

Management concepts with

respect to Main Memory and

Virtual Memory.

3, 4 3 2 2 - - - - - - - - 3 - 2 - -

CO4

Discuss the Storage Management

concepts like File-System

Interface, File-System

Implementation and Mass-

Storage Structure

4, 5 3 2 2 - - - - - - - - 3 - 2 - -

CO5

Elucidate the Protection features

in Operating System and case

study in Linux OS.

5 3 2 2 - - - - - - - - 3 - 2 - -

