	Answer any FIVE FULL Questions	MA	СО	RB
1 a.	Explain the steps of machine learning and data mining process with a neat diagram.	RKS 6	CO2	1
	Ans: Understand the business, Understand the data, Data preprocessing, modelling, model evaluation, model deployment			
	Understand the data Data preprocessing Modelling Model Evaluation Model			
b.	Apply the Z-score normalization in the following data and find the normalized values.:	4	CO2	3
	$X = \{8,10,15,20\}$		002	
	Ans: mean 13.25 sd = 4.65 or 5.37 New values [-1.127, -0.698, 0.375, 1.44] Or [-0.98, -0.6, 0.32, 1.25]			
2 a.	Find the outliers and 5-point summary for the following dataset and draw the box plot of that: {10,12,15,18,22,23,32,34,78,31,14}	5	CO2	3
	Ans: Q1=14 Q2=22, Q3=32 min =10, Max = 34, outlier 78,			
b.	Solve the following equations and find the value of x and y using the Gaussian Elimination Method. $3x+5y=9$ $2x+3y=5$	5	CO2	3
	3 5 9 3R1-5R2 = -1 0 2 R2 + 2R1 = -1 0 2 2 3 5 2 3 5 0 3 9 X= -2, y=3			

3	Music	Number of	User Review	Number of User	Whether					10	CO3	3
	Name	downloads (in	Rating	Reviews (in tens)	you liked							
	-	thousands)			the Music?							
	-	2.35 9.87	7.5	0.5	Yes							
	_	0.87	4	7	Yes							
		1.2	7.1	5.6	Yes							
		5.5	6.2	4.3	No							
	F	2.3	1.9	2.8	No							
						4.8 dowr	nloads, user rat	ing of 5.5 and has	3.1 user			
r	eviews	•										
	Λ,	se: Die	ancoc	[2 26 E 7	1 5 72	166 1 EE 1	201					
				-	1, 5./3	, 4.66, 1.55, 4	.59]					
			3 are: <i>l</i>									
				e 0.306 0								
				ight = 0.2								
				= 0.26, \	Weight	for NO= 0.74						
4) find S								3+7	CO3	3
			ate Elimi		the versi	on spaces while ap	unlying aandida	to alimination algo	orithm			
ľ	ni uie i	Origin		Manufactur		Decade	Type	Example	OHUIIII.			
		O' I'BII		er	COIOI	Detade	1,750	Туре				
		Japan	I	Honda	Blue	1980	Economy	Positive				
		Japan	7	Toyota	Green	1970	Sports	Negative				
		Japan	1	Toyota	Blue	1990	Economy	Positive				
		USA	(Chrysler	Red	1980	Economy	Negative				
		Japan	I	Honda	White	1980	Economy	Positive				
1	Finds	Japai	ı. Hono	da, Blue,	1980	Economy	(1)					
		Japan		Blue,	?	Economy	(3)					
		Japan		?,	?	Economy	(5)					
	CE:		C1	Japan, H	landa	Dlue 1000	Foonamy					
(CL.			- 3apan, 11 		Diue, 1700	Economy>	•				
			G2			DI 1000						
						Blue, 1980						
	T		G2: <	THonda	? ? ?>	? Blue ? ?	??1980</td <td>) !><!-- ! ! !</td--><td></td><td></td><td></td><td></td></td>) !> ! ! !</td <td></td> <td></td> <td></td> <td></td>				
ľ	Econo	my>										
			S3. /	Ionon 9	Rlug	? Economy>						
						? ? ? Economy						
			G 5. \	Diuc	• •	· · · · · Econ	miy>					
			S4: <	Japan. ?	Blue.	? Economy>						
						<japan???i< td=""><td>Economy></td><td></td><td></td><td></td><td></td><td></td></japan???i<>	Economy>					
						_	-					
						Economy>						
			G5: <	<japan ?<="" td=""><td>? ? I</td><td>Economy></td><td></td><td></td><td></td><td></td><td></td><td></td></japan>	? ? I	Economy>						
	Fv	nlain the	1:00					1 6 1				1
			ditterance		71/ Aarn11	ng and Hager Learn	ning with the he	aln of an avample		1/1/41	(41)	/)
5 a						ng and Eager Learr asure methods use				[4+6]	CO3	2

	during training phase Generalizes a mode instances before it represented in the class of the model built Fast in testing phase Learns by creating general training the complete in Absolute Error (M. RMSE), Relative MS	with the training eceives a test instance the test instance using obal approximations	d Error	002	3
class of the test instance of the training data on the training data of	during training phase Generalizes a mode instances before it r Predicts the class of the model built Fast in testing phase Learns by creating g n Absolute Error (M. RMSE), Relative MS	with the training eceives a test instance the test instance using obal approximations		002	
class of the test instance in the training data ng phase aking many local ons rror (residual), Mea lean Squared Error egression in Following Data	instances before it r Predicts the class of the model built Fast in testing phase Learns by creating g n Absolute Error (M. RMSE), Relative MS	the test instance using obal approximations		002	
n the training data ng phase aking many local ons rror (residual), Mea lean Squared Error egression in Following Date	the model built Fast in testing phase Learns by creating g n Absolute Error (M. RMSE), Relative MS	obal approximations AE), Mean Squared		002	
aking many local ons rror (residual), Mea lean Squared Error egression in Following Dat	Learns by creating g n Absolute Error (M. RMSE), Relative MS	AE), Mean Squared		002	
rror (residual), Mea lean Squared Error egression in Following Dat	n Absolute Error (M. RMSE), Relative MS	AE), Mean Squared		003	
lean Squared Error	RMSE), Relative MS	•		003	
X (Year)	I Y (Hypendifiire)	7	10	CO3	
X (Year)	Y (Expendifure)	7			
1	12	_			
2	19	1			
3	29	1			
4	37				
5	45				
re of Company in 6 th Year	and 8th Year. Also plot the r	gression line.			\bot
$\frac{-(\overline{x})(\overline{y})}{-(\overline{x})^2} \qquad a_0 = 0$	$(\overline{y}) - a_1 \times \overline{x}$				
_mean = 28.4, x2_n	ean = 11, XY_mean	= 102			
	re of Company in 6 th Year a $-(\overline{x})(\overline{y})$ $-(\overline{x})^{2}$ $a_{0} = ($	5 45	re of Company in 6 th Year and 8 th Year. Also plot the regression line.	re of Company in 6 th Year and 8 th Year. Also plot the regression line.	re of Company in 6 th Year and 8 th Year. Also plot the regression line.

CI CCI HoD

$$= 8 + 10 + 15 + 20 / 3T4$$

$$r = \sqrt{\frac{(u - \bar{x})^L}{N}}$$
 or

$$\Gamma = \sqrt{\frac{(n-\bar{x})^2}{N}} \quad \text{or} \quad \sqrt{\frac{(n-\bar{x})^2}{N-1}}$$

$$\sqrt{\frac{1}{4}} = \sqrt{\frac{(0-13-25)^2}{4} + (\frac{10-13\cdot25}{4})^2} + \sqrt{\frac{10-13\cdot25}{4}}$$

$$T = \left[\frac{(0 - 13 \cdot 15)^{L}}{3} + \left(\frac{10 - 13 \cdot 15}{3} \right)^{L} + \left(\frac{15 - 13 \cdot 15}{3} \right)^{L} \right]$$

$$\int + \frac{(20-13\cdot 25)^{2}}{3}$$

Z Acore
$$\rightarrow$$
 $\times - \mu$

$$Z_1 = 0 - 13 \cdot 25 \qquad 0 - 13 \cdot 25 \qquad = -1 \cdot 12, \quad -0 \cdot 977$$

$$4.65 \qquad 5.37$$

$$Z_2 = \frac{10 - 13 \cdot 25}{4 \cdot 65}$$
, $\frac{10 - 13 \cdot 25}{5 \cdot 37} = -0.69$, -0.60

$$Z_3 = \frac{15 - 13.25}{4.65}$$
, $\frac{15 - 13.25}{5.37} = 0.37$, $0.3L$

$$24 = \frac{20 - 13.15}{4.65}$$
, $\frac{20}{45 - 13.25} = 1.45$, 1.25

Answer-

Answer - 2 - (a)

sort in ascending order. = 10,12, 14, 15, 22, 23, 32, 34, 70.

N=11

Median =
$$\left(\frac{N+1}{2}\right)$$
 th Term = $\left(\frac{11+1}{2}\right)$ Th Term = 6 th Term

= 22

min = 10, max = 34 70. 34

$$Q_{1} = 10, 12, 15, 10$$

$$Q_{3} = 23, 31, 32, 34, 70$$

$$Q_{1} = \left(\frac{N+1}{2}\right) \text{ th Term}$$

$$= \left(\frac{5+1}{2}\right) \text{ th Term}$$

$$= 14$$

$$Q_{3} = \left(\frac{N+1}{2}\right) \text{ th Term}$$

$$= 3^{rd} \text{ Jerm}$$

$$= 3^{rd} \text{ Jerm}$$

$$= 32$$

$$10R = Q_{3} - Q_{1}$$

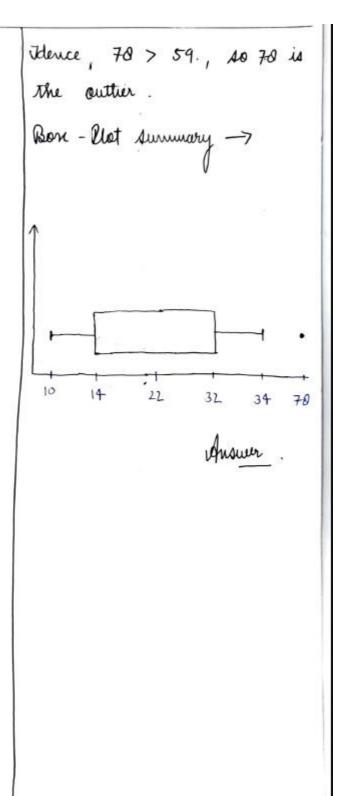
$$= 32 - 14$$

$$= 18$$

$$= 18$$

$$\text{upper Bound} \longrightarrow Q_{3} + 1.5 \times 10$$

$$= 32 + 1.5 \times 10$$


$$= 59$$

$$10 \text{ Lerm Bound} = Q_{1} - 1.5 \times 10$$

$$= 59$$

$$= 14 - 1.5 \times 10$$

$$= -13$$

Answer - 2-(6)

$$3n+5y=9$$

$$2n+3y=5$$

$$A = \begin{bmatrix} 3 & 5 & | & 9 \\ 2 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 5 & | & 9 \\ 2 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 5 & | & 9 \\ 2 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 5 & | & 9 \\ 2 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 5 & | & 9 \\ 2 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 5 & | & 9 \\ 2 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 5 & | & 9 \\ 2 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & | & 3 & 3 \\ 0 & 3 & -1 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & | & 3 & 3 \\ 0 & 1 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & | & 3 & 3 \\ 0 & 1 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & | & 3 & 3 \\ 0 & 1 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & | & 3 & 3 \\ 0 & 1 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & | & 3 & 3 \\ 0 & 1 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & | & 3 & 3 \\ 0 & 1 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & | & 3 & 3 \\ 0 & 1 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & | & 3 & 3 \\ 0 & 1 & 3 & | & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & | & 3 & 3 \\ 0 & 1 & 3 & | & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

$$x = -2, y = 3$$
Answer.

Another way -> using tehleon form

$$A = \begin{bmatrix} 3 & 5 \\ 2 & 3 \end{bmatrix}, \quad \mathcal{N} = \begin{bmatrix} \gamma \\ \gamma \end{bmatrix}, \quad \mathcal{B} = \begin{bmatrix} 9 \\ 5 \end{bmatrix}$$

$$R_1 \rightarrow R_1/3$$

$$\begin{bmatrix} 1 & 5/3 & 3 \\ 2 & 3 & 5 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - 2R_1$$

$$= \begin{bmatrix} 1 & 5 | 3 & 3 \\ 0 & -1 | 3 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 3 & 3 \\ 0 & -1 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

$$1 + 5 = 3 = 3 = -1 = 3 = -1 = 3 = 3 = 3$$

$$N + \frac{5}{3}y = 3$$
, $-\frac{1}{3}y = -1$ $\Rightarrow y = 3$
 $N = 3 - \frac{5}{8}x^3 = -2$ $\Rightarrow N = -2$, $y = 3$

Answer-3.

Music Name	No of soundards	Rating	Munder of	the Music	
Α	2 - 35	7-5	z · 3	Y	
В	9-87	5	0.5	И	
C	0.07	4	7-	У	
D	1.7	7-1	5.6	ý	
E	5.5	6.2	4.3	N	
F	2.3	1.9	2.0.	N	
					J
DA =	(4.0-2.3	5)2+(5.5-7.	5)2+ (3-1-2-3	3)2	
= \[10.64	15			
=	3-26				
DB= ((4.8-9.8)	+)2+(5.5-	5)L+ (3.1-	·0·5)L	

= J32.7149 = 5.71

CMK					
Music	Non	USR	NUR	WLM	ED
ram Ess	6-2	6.2	4.3	No	1.55
¹ A	2.35	7.5	2-3	Yes.	3.26
£	2-3	1.9	2-8	No	4.39
D	1-2	7-1	5.6	yes.	4-66
В	9-07	5	0.5	No	5.71
e	0.07	7-5	2.3	yes. 1	5.73

K=3, select the first three values.

calculated Inverse.

sum= 0.645+ 0.306+ 0.227

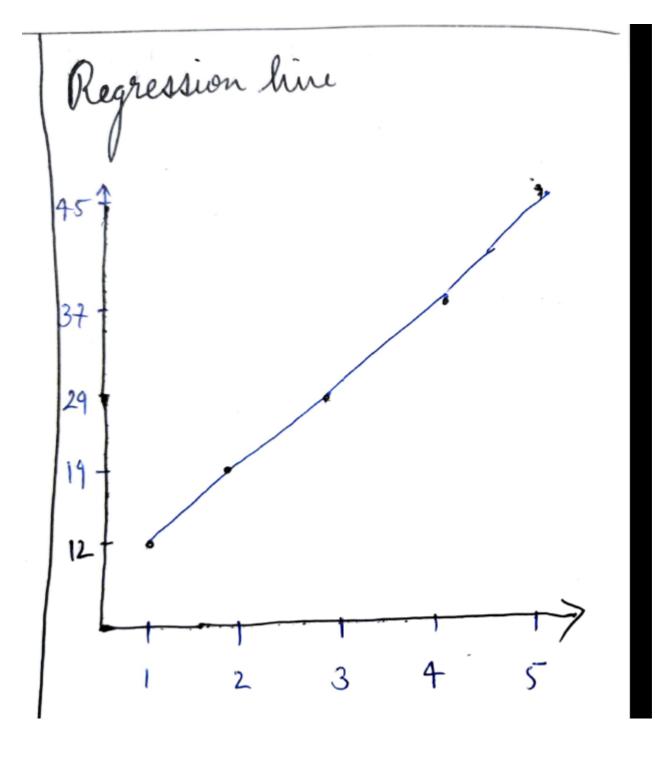
	A	rouser - 6.	
iwar Re	gression ->		
(Year)	y (Enpenditure)	хУ	ײ
1	12	12_	T
2_	19	3.0	4-
3	29	87	9
4 5	37	140	16
5	45	225	25
X=15 5	XY = 28.4	1×7=101-2	X ² =

CMK

THE PROPERTY

$$\alpha = \frac{\overline{\lambda}}{\overline{\lambda}} - \frac{\overline{\lambda}}{\overline{\lambda}}$$

$$= \frac{10L - 0.5 + 2}{11 - 3^{2}} 3 \times 28.4$$


$$=\frac{102-85.2}{11-9}$$

$$y = 0.4x + 3.2$$

Expenditure in 6th year = 8.4×6+ 3.2 = 53.6

Enfenditure in 0th year = 0.4×0+3.2 = 70.4

Arramer !

	CO-PO and CO-PSO Mapping																		
	Course Outcomes	Blo oms Lev el	Mo dule s cove red	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 1 0	P O 1	P O 1 2	P S O 1	P S O 2	P S O 3	P S O 4
CO1	Apply the knowledge of searching and reasoning techniques for different applications.	L2	M1	3	3	2	3	3	1	1	1	1	1	1	1	1	1	1	2
CO2	Have a good understanding of machine leaning in relation to other fields and fundamental issues and challenges of machine learning.	L3	M2	3	3	2	3	3	1	-	ı	1	-	-	1	ı	1	1	2
CO3	Apply the knowledge of classification algorithms on various dataset and compare results.	L3	M3	3	3	2	3	3	1	-	-	1	-	-	1	-	1	1	2
CO4	Model the neuron and Neural Network, and to analyze ANN learning and its applications.	L3	M4	3	3	2	3	3	1	-	ı	1	ı	1	1	1	1	1	2
CO5	Identifying the suitable clustering algorithm for different pattern.	L3	M5	3	3	2	3	3	1	-	-	1	-	1	1	ı	1	1	2

COGNITIVE LEVEL	REVISED BLOOMS TAXONOMY KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

	(CORRELATION LEVELS			
PO1	Engineering knowledge	PO7	Environment and sustainability	0	No Correlation
PO2	Problem analysis	PO8	Ethics	1	Slight/Low
PO3	Design/development of solutions	PO9	Individual and team work	2	Moderate/ Medium
PO4	Conduct investigations of complex problems	PO10	Communication	3	Substantial/ High
PO5	Modern tool usage	PO11	Project management and finance		
PO6	The Engineer and society	PO12	Life-long learning		