USN

Internal Assessment Test 3 — March 2024

Sub: | Database Management System C(fduep 21CS53 Branch: | CSE
Date: | 13/3/2024 | Duration: | 90 mins Max Marks: |50 Sgr:c(V/IA, B, C OBE
Answer any FIVE FULL Questions MK'AéR co RTB
1 i. lustrate types of update anomalies with example. [4+6] |CO4| L3
ii. A relation R (P, Q, U, S, T) is having two functional dependencies sets R1= {P>Q, PQ->U,
S=>T}; R2= {P>QU, S>PT}. Are they equivalent? Justify your answer with proper reasoning.
2 I. List the properties to be satisfied by a relation in INF, BCNF, 4NF and 5NF [2+8] |CO4| L3
ii.Write the algorithm for finding a minimal cover for a set of functional dependencies.
Consider a relation R (A, B, C, D) having some attributes and FDs as: {B>A, AD>C, C>ABD}.
Find the canonical cover for this set of FDs.
3 \Write the algorithm for Dependency-Preserving and Nonadditive (Lossless) Join Decomposition | [2+8] |CO4| L3
into 3NF Schemas.
Consider a relation R (A, B, C, D, E, F, G, H) having FDs as: {A->B, ABCD>E, EF>GH,
ACDF->EG}.
i. Find candidate key of this relation R.
ii.Preserving the dependency, decompose R into 3NF.
4 \What type of problems may arise if concurrency control and recovery are not maintained in DBMS | [10] |CO4| L2
transaction? Justify your answer with proper example.
5 Explain 2PL protocol for concurrency control. How does it guarantee serializability? Justify your [10] |CO4| L2
answer with a suitable example.
6a |Explain the basic time stamping protocol for concurrency control. [4] |CO4| L2
6b (Consider the below mentioned schedule with transactions T1, T2, T3 with read () and write () | [6] |CO4| L3
operations on data items X, Y, Z. Draw the precedence graph for the schedule and state whether the
schedule is serializable or not. If the schedule is serializable, write down the serial schedule.
S1: 1r3(Y); r3(2); r1(X); wil(X); w3(Y); w3(2); r2(2), r1(Y); wl(Y); r2(Y); w2(Y); r2(X); w2(X).

Model Solution

1) 1) Hlustrate types of update anomalies with example.

***update anomalies))
Insertion Anomalies

) Insemon anoma_“es OInsertion anomalies can be differentiated
* deletion anomalies, into two types, illustrated by the following
. modification anomalies examples based on the EMP_DEPT relation:
Redundancy
EMP_DEPT [1 I
Ename Ssn Bdate Address Dnumber I Dname Dmgr_ssn
Smith, John B 123456789 | 1965-01-09 | 731 Fondren, Houston, TX 5 | Research 333445555
Wong. Franklin T. | 333445555 | 1955-12-08 | 838 Voss, Houston, TX 5 I Research 333445555

1. 70 insert a new employee tuple into EMP_DEPT, we must include either the attribute
values for the department that the employee works for, or NULLs

- For example, to insert a new tuple for an employee who works in department
number 5, we must enter all the attribute values of department 5 correctly so that they are
consistent with the corresponding values for department 5 in other tuples in EMP_DEPT

- In the design of Employee in fig 1, we do not have to worry about this consistency
problem because we enter only the department number in the employee tuple; all other
attribute values of department 5 are recorded only once in the database, as a single tuple in
the DEPARTMENT relation

Deletion Anomalies

O The problem of deletion anomalies is related to the second insertion anomaly
situation just discussed

- If we delete from EMP_DEPT an employee tuple that happens to represent
the last employee working for a particular department, the information concerning that
department is lost from the database

- This problem does not occur in the database of Figure 2 because
DEPARTMENT tuples are stored separately.

Modification Anomalies

0 In EMP_DEPT, if we change the value of one of the attributes of a particular
department—say, the manager of department 5—we must update the tuples of all
employees who work in that department; otherwise, the database will become
inconsistent

O If we fail to update some tuples, the same department will be shown
to have two different values for manager in different employee tuples, which would be
wrong

ii) A relation R (P, Q, U, S, T) is having two functional dependencies sets R1= {P=>Q, PQ>U,
S>T}; R2={P>QU, S=>PT}. Are they equivalent? Justify your answer with proper reasoning.

Ans:
Case 1) Determining Whether R2 o R1 or not
Step 1)

e (P)+={P, Q, U}/ closure of left side of P — QU using set R1.
e (S)*+={P,Q,U,S, T} // closure of left side of S — PT using set R1.

Step 2)

e (P)+={P,Q, U} // closure of left side of P — QU using set R2.
e (S)*+={P,Q,U,S, T} // closure of left side of S — PT using set R2.

Step 3)
Comparing the results of Step 1 and Step 2, we find,
« Functional dependencies of set R2 can determine all the attributes which have been determined by
the functional dependencies of set R1.
e Thus, we conclude R2 is a subset of R1 i.e. R2 o R1.
Case 2) Determining Whether R1 © R2 or not
Step 1)
(P)" = {P, Q, U} // closure of left side of P— Q using set R2.
e (PQ)"={P, Q, U} // closure of left side of PQ — U using set R2.
(S =1{P,Q, U,S, T} // closure of left side of S — PU and S — T using set R2.
Step 2)
(P)" = {P, Q, U} // closure of left side of P— Q using set R1.
e (PQ)"={P, Q, U} // closure of left side of PQ — U using set R1.
(S)"=1{P,Q, U,S, T} // closure of left side of S — PU and S — T using set R1.
Step 3)
Comparing the results of Step 1 and Step 2, we find,
« Functional dependencies of set R1 can determine all the attributes which have been determined by
the functional dependencies of set R2.
e Thus, we conclude R1 is a subset of R2 i.e. R1 o R2.

Case 3) Determining Whether Both R1 and R2 satisfy each other or not

e From Step 1, we conclude R2 o R1.
e From Step 2, we conclude R1 o R2.

Thus, we conclude that both R1 and R2 satisfied each other i.e. R1 = R2.

2)i) List the properties to be satisfied by a relation in 1INF, BCNF, 4NF and 5NF

Normal Description

Form

TNF A relation is in TNF if it contains an atomic value,

2ZMF A relation will be in 2MF if it is in TNF and all non-key attributes are fully functional dependent on

the primary key.

3MNF Arelation will be in 3NF if it is in 2NF and no transition dependency exists,

BCMNF A stronger definition of 3MF is known as Boyce Codd's normal form.

AMF A relation will be in 4NF if it is in Boyce Codd's normal form and has no multi-valued dependency.

SMNF A relation is in SNF. If it i1s in 4MF and does not contain any join dependency, joining should be
lossless.

ii) Consider a relation R (A, B, C, D) having some attributes and FDs as: {B>A, AD>C,
C->ABD}. Find the canonical cover for this set of FDs.

Step-1 : Decompose the functional dependencies using Decomposition rule(Armstrong’s Axiom) i.e. single
attribute on right hand side.

FD1:B A

FD2:AD C

FD3:C A

FD4:C B

FD5:C D

Step-2 : Remove extraneous attributes from LHS of functional dependencies by calculating the closure of

FD’s having two or more attributes on LHS.
Here, only one FD has two or more attributes of LHS i.e. AD C.

{AH ={A}

{D}+ = {D} In this case, attribute “A” can only determine “A” and “D” can only determine “D”. Hence, no
extraneous attributes are present and the FD will remain the same and will not be removed.

Step-3 : Remove FD’s having transitivity.
FD1:B A

FD2:C A

FD3:C B

FD4:AD C

FD5:C D. Above FDI1, FD2 and FD3 are forming transitive pair. Hence, using Armstrong’s law of
transitivity i.e. if X Y, Y X then X Z should be removed. Therefore we will have the following FD’s left :

FD1:B A
FD2:C B
FD3:AD C
FD4:C D

Also, FD2 & FD4 can be clubbed together now. Hence, the canonical cover of the relation R(A,B,C,D) will
be:

Mc {R(ABCD)} ={B A, C BD, AD C}

3) Write the algorithm for Dependency-Preserving and Nonadditive (Lossless) Join Decomposition into
3NF Schemas.

Algorithm:
Relational Synthesis into 3NF with Dependency Preservation and Nonadditive Join Property

Input: A universal relation R and a set of functional dependencies F on the atiributes of R.
1. Find a minimal cover G for F

2. For each left-hand-side X of a functional dependency that appears in G, create a
relation schema in D with attributes {X U {A1} U {A2} ... U {Ak}}, where X—A1, X—A2, ..,
X—Ak are the only dependencies in G with X as left-hand-side (X is the key of this relation)

3 If none of the relation schemas in D contains a key of R, then create one more relation
schema in D that contains attributes that form a key of R

4 Eliminate redundant relations from the resulting set of relations in the relational database
schema. A relation R is considered redundant if R is a projection of another relation S in the
schema; alternately, R is subsumed by S

Consider a relation R (A, B, C, D, E, F, G, H) having FDs as: {A=>B, ABCD2>E, EF>GH,
ACDF->EG]}. Find candidate key of this relation R. Preserving the dependency, decompose R into
3NF.

™ A
} Mitwmat Fotd's

AN e i

i)

A->8
Ffreo-—> F
EF — an
§ Caudrdae W - AeD EF
-
x g Pkt 2= pop

= EF ot
| Ao bF ‘

4. What type of problems may arise if concurrency control and recovery are not maintained in DBMS
transaction? Justify your answer with proper example

1.The Lost Update Problem [WW conflict]

a Occurs when two transactions that access the same DB items have their operations
interleaved in a way that makes the value of some DB item incorrect
O Suppose that tfransactions T1 and T2 are submitted at approximately the same time,
and suppose that their operations are interleaved as shown in Figure below
T Ty OFinal value of item X is incorrect because T2
. reads the value of X before T1 changes it in the
read_item(X);
X=X-N: database, and hence the wupdated value
read_item(X); resulting from T1 is lost.
X=X+ M,
Time write_item(X);
read_item(¥); te item(X): ltem X has an incorrect value because
write_item(X); its update by T, is Jost (overwritten).
Y=VY+N;

write_item(Y);

O For example:

X = 80 at the start (there were 80 reservations on the flight)

N = 5 (T1 transfers 5 seat reservations from the flight corresponding to X to the flight corresponding to Y)
M = 4 (T2 reserves 4 seats on X) The final result should be X =79.

[The interleaving of operations shown in Figure is X = 84 because the update in T1 that removed
the five seats from X was lost.

2.The Temporary Update / Dirty Read Problem [WR conflict]

Joccurs when one transaction updates a database item and then the transaction fails for some
reason before doing commit.

OMeanwhile the updated item is accessed by another transaction before it is changed back to
its original value

Ty T

read_item(X);
X=X-N;
write_item(X);

Time read_item(X);
X=X+ M,
write_item(.X);
Transaction T, fails and must change
read_item(Y'); the value of X back to its old value;
- .
Y meanwhile T, has read the temporary

incorrect value of X.

J3.The Incorrect Summary Problem

+If one transaction is calculating an aggregate summary function on a number of DB items while
other transactions are updating some of these items, the aggregate function may calculate some
values before they are updated and others after they are updated.

sum = 0;
read_item({A);
sum =sum + A;

read_item(X);
X=X-N;
write_item(X);
read_item(X);
sum =sum + X;
read_item(Y’);
sum =sum + Y;

Tyreads X after N is subtracted and reads
-+—— Y before N is added; a wrong summary
is the result (off by V).

read_item(Y);

Y=Y+N,

write_item(Y);
4.The Unrepeatable Read Problem [RW conflict]
O Transaction T reads the same item twice and gets different values on
each read, since the item was modified by another transaction T between the
two reads.
d for example, if during an airline reservation transaction, a customer inquires about
seat availability on several flights
O When the customer decides on a particular flight, the transaction then reads the

number of seats on that flight a second time before completing the reservation, and it may end
up reading a different value for the item.

Why Recovery Is Needed

Whenever a transaction is submitted to a DBMS for execution, the system is

responsible for making sure that either:

+ All the operations in the transaction are completed successfully and their effect is recorded
permanently in the database (The transaction is committed) or

+ The transaction does not have any effect on the database or any other transactions

Jin the first case, the transaction is said to be committed, whereas in the second case, the

transaction is aborted

JIf a transaction fails after executing some of its operations but before executing all of them,

the operations already executed must be undone and have no lasting effect.

5. Explain 2PL protocol for concurrency control. How does it guarantee serializability? Justify your
answer with a suitable example.

The concept of locking data items is one of the main techniques used for
controlling the concurrent execution of transactions. A lock is a variable
associated with a data item in the database. Generally there is a lock
for each data item in the database.

A lock describes the status of the data item with respect to possible
operations that can be applied to that item. It is used for synchronizing
the access by concurrent transactions to the database items.

O A transaction locks an object before using it
O When an object is locked by another transaction, the requesting
transaction must wait

This Two-phase locking (2PL) protocol divides the execution phase of

a transaction into three parts.

In_the first part, when the transaction starts executing, it seeks

permission for the locks it requires.
It is a concurrency control method that guarantees serializability

The second part is where the transaction acquires all the locks.

As soon as the transaction releases its first lock, the third phase starts.

» In this phase, the transaction cannot demand any new locks.

» |t only releases the acquired locks.

» The protocol utilizes locks, applied by a transaction to data, which
may block other transactions from accessing the same data during
the transaction's life.

Guaranteeing Serializability by Two-Phase Locking

0 A transaction is said to follow the two-phase locking
protocol if all locking operations (read_lock, write_lock) precede
the first unlock operation in the transaction

0 Such a transaction can be divided into two phases:

0 Expanding or growing (first) phase, during which new
locks on items can be acquired but none can be released

0 Shrinking (second) phase, during which existing locks
can be released but no new locks can be acquired

0 If lock conversion is allowed, then upgrading of locks
(from read-locked to write-locked) must be done during the
expanding phase, and downgrading of locks (from write-locked
to read-locked) must be done in the shrinking phase.

(@ T, Ty
read_lock(Y); read_lock(X);
read_item(Y); read_item(X);
unkock(¥); unlock(X);
write_lock(X); write_lock(Y);
read_rtem(X); read_rtem(¥);
X=X+V; Y=X+V
write_item(X); write_item(Y);
unbock(X); unlock(¥);

(c) T Ty
read_lock(¥);
read_item(¥);
unlock(¥);

read_lock(X);
read_item(X);
unlock{X);
Time write_lock(Y);
read_item(Y);
Y=X+1
write_item(Y);
unlock(¥);
write_lock(X);
read_item(X);
X=X+Y,
J write_item(X);
unlock(X);

(b) Initial values: X=20, Y=30

Result senal schedule T,
followed by T,: X=50, Y=B0

Result of serial schedule T,
followed by T,: X=70, Y=50

Transactions T1 and T2 in Figure 22.3(a) do not follow the
two-phase locking protocol because the write_lock(X)
operation follows the unlock(Y) operation in T1, and
similarly the write_lock(Y) operation follows the unlock(X)
operation in T2. so not following the rule of growing phase
(only can acquire lock, cant release) and shrinking phase
(only can release lock, cant acquire).

Figure 21.3 Transactions that do not obey two-phase locking (a) Two
transactions T1 and T2 (b) Results of possible serial schedules of T1 and T2
(c) A nonserializable schedule S that uses locks

| If we enforce two-phase locking, the transactions can be rewritten as T1' and
T2 as shown in Figure 22 4.

O Now, the schedule shown in Figure 22.3(c) is not permitted for T1_ and T2_
(with their modified order of locking and unlocking operations) under the rules of
locking because T1_ will issue its write_lock(X) before it unlocks item Y; consequently,
when T2_ issues its read_lock(X), it is forced to wait until T1_ releases the lock by
issuing an unlock (X) in the schedule.

T, T,
Here during growing phase only acquiring locks, L 2
not releasing any and during shrinking phase read_lock(Y); read_lock(X);
only releasing locks, not acquiring any lock, so read_item(¥): read_item(X):

satisfies 2PL property.

)

write_lock(X);

write_lock(Y);

unlock(Y) unlock(X)
Figure 22.4 read_item(X); read_item(Y);
Transactions T," and T, which are the X=X+V Y=X+V
same as T, and T, in Figure 22.3, but write_item(X); write_item(¥):
follow the two-phase locking protocal. unlock(X); unlock(Y);

Note that they can produce a deadlock.

O If every transaction in a schedule follows the two-phase locking
protocol, schedule guaranteed to be serializable

6a) Explain the basic time stamping protocol for concurrency control

The concurrency control algorithm must check whether conflicting operations violate the
timestamp ordering in the following two cases:

1.Whenever a transaction T issues a write_item(X) operation, the following is checked:
alf read_TS(X) = TS(T) or if write_TS(X) = TS(T), then abort and roll back T and reject the
operation. This should be done because some younger transaction with a timestamp greater
than TS(T)—and hence after T in the timestamp ordering—has already read or written the value
of item X before T had a chance to write X, thus violating the timestamp ordering.

b.If the condition in part (a) does not occur, then execute the write_item(X) operation of T and
set write_ TS(X) to TS(T).

2. Whenever a transaction T issues a read_item(X) operation, the following is checked:
alf write TS(X) = TS(T), then abort and roll back T and reject the operation. This should be
done because some younger transaction with timestamp greater than TS(T)—and hence after T
in the timestamp ordering—has already written the value of item X before T had a chance to
read X.

b If write_ TS(X) = TS(T), then execute the read_item(X) operation of T and set read TS(X) to
the larger of TS(T) and the current read TS(X).

Whenever the basic TO algorithm detects two confiicting operations that occur in the incorrect
order, it rejects the later of the two operations by aborting the transaction that issued it. The
schedules produced by basic TO are hence guaranteed to be confiict serializable.

6b) Consider the below mentioned schedule with transactions T1, T2, T3 with read () and write ()
operations on data items X, Y, Z. Draw the precedence graph for the schedule and state whether the
schedule is serializable or not. If the schedule is serializable, write down the serial schedule.

S1: r3(Y); r3(2); r1(X); wi(X); w3(Y); w3(Z); r2(2), r1(Y); wi(Y); r2(Y); w2(Y); r2(X); w2(X).

