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Answer any FIVE FULL Questions MARKS CO RBT 

1 (a) Obtain a PDA to accept the language.  

i. L= {w(a+b)* | w such that w has an equal  number of a’s and 

b’s} 

 

ii. L={anbn | n>=1} by a final state. 
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   (b)  Discuss recursive descent parsing with a suitable example. 

 

Recursuve descent parsing: 
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2 (a) Design a Turing Machine and show its moves. 
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   (b) Design a predictive parser for the following grammar. Show the stack 

implementation for the input id+id*id. Construct a parse table by using FIRST 

and FOLLOW algorithm. 

E->E+T/T 

T->T*F/F 

    

[3+3+2=8] 

 

CO2 L3 



 

F->(E)/ id 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 (a)  Construct a Turing Machine which accepts the language L= {0n1n | n>=1}. 

Show the result of the moves using a transition table and the Turing Machine 

model at the end. 
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   (b) What is a handle and Handle pruning? Design a shift-reduce parser for the 

input string id+id*id following the production rules: E->E+E, E->E*E, 

 E->(E), E->id 

 

Solution: Handle Definition: Bottom-up parsing during a left-to-right scan of 

the input constructs a right- most derivation in reverse. Informally, a “handle" 

is a substring that matches the body of a production, and whose reduction 

represents one step along the reverse of a rightmost derivation. 

The table below shows the hnadles during parsing of id1*id2. 
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Handle pruning Definition: A rightmost derivation in reverse can be obtained 

by \handle pruning." That is, we start with a string of terminals w to be parsed. 

If w is a sentence 

 

 

To reconstruct this derivation in reverse order, we locate the handle n in 

n and replace n by the head of the relevant production  An -> n to obtain 

the previous right-sentential form n-1.  If by continuing this process we 

produce a right-sentential form consisting only of the start symbol 

S, then we halt and announce successful completion of parsing. The reverse of 

 

 

 

 

 

 

 



 

 

 

the sequence of productions used in the reductions is a rightmost derivation 

for the input string. 

 

 

Shift-reduce parser: 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

4 (a) Explain with neat diagrams the variants of the Turing machine. 

 

1. Multi-tape Turing Machines have multiple tapes where each tape is 

accessed with a separate head. Each head can move independently of 

the other heads. Initially the input is on tape 1 and others are blank. At 

first, the first tape is occupied by the input and the other tapes are kept 

blank. Next, the machine reads consecutive symbols under its heads 

and the TM prints a symbol on each tape and moves its heads. 

 

        [6] CO3 L1 



 

 

 

A Multi-tape Turing machine can be formally described as a 6-tuple (Q, X, B, 

δ, q0, F) where − 

Q is a finite set of states 

X is the tape alphabet 

B is the blank symbol 

δ is a relation on states and symbols where 

δ: Q × Xk → Q × (X × {Left_shift, Right_shift, No_shift })k 

where there is k number of tapes 

q0 is the initial state 

F is the set of final states 

Note − Every Multi-tape Turing machine has an equivalent single-tape Turing 

machine. 

2. Multi-track Turing machines, a specific type of Multi-tape Turing 

machine, contain multiple tracks but just one tape head reads and 

writes on all tracks. Here, a single tape head reads n symbols 

from n tracks at one step. It accepts recursively enumerable languages 

like a normal single-track single-tape Turing Machine accepts. 

A Multi-track Turing machine can be formally described as a 6-tuple (Q, 

X, ∑, δ, q0, F) where − 

Q is a finite set of states 

X is the tape alphabet 

∑ is the input alphabet 

δ is a relation on states and symbols where 

δ(Qi, [a1, a2, a3,....]) = (Qj, [b1, b2, b3,....], Left_shift or Right_shift) 

q0 is the initial state 

F is the set of final states 

Note − For every single-track Turing Machine S, there is an equivalent multi-

track Turing Machine M such that L(S) = L(M). 

3. In a Non-Deterministic Turing Machine, for every state and symbol, 

there are a group of actions the TM can have. So, here the transitions 

are not deterministic. The computation of a non-deterministic Turing 

Machine is a tree of configurations that can be reached from the start 

configuration. 

An input is accepted if there is at least one node of the tree which is an accept 

configuration, otherwise it is not accepted. If all branches of the 

computational tree halt on all inputs, the non-deterministic Turing Machine is 

called a Decider and if for some input, all branches are rejected, the input is 

also rejected. 



 

A non-deterministic Turing machine can be formally defined as a 6-tuple (Q, 

X, ∑, δ, q0, B, F) where − 

Q is a finite set of states 

X is the tape alphabet 

∑ is the input alphabet 

δ is a transition function; 

δ : Q × X → P(Q × X × {Left_shift, Right_shift}). 

q0 is the initial state 

B is the blank symbol 

F is the set of final states 

4. Semi-infinite tape: A Turing Machine with a semi-infinite tape has a 

left end but no right end. The left end is limited with an end marker. 

 

 

It is a two-track tape − 

• Upper track − It represents the cells to the right of the initial head 

position. 

• Lower track − It represents the cells to the left of the initial head 

position in reverse order. 

The infinite length input string is initially written on the tape in contiguous 

tape cells. 

The machine starts from the initial state q0 and the head scans from the left 

end marker ‘End’. In each step, it reads the symbol on the tape under its head. 

It writes a new symbol on that tape cell and then it moves the head either into 

left or right one tape cell. A transition function determines the actions to be 

taken. 

It has two special states called accept state and reject state. If at any point of 

time it enters into the accepted state, the input is accepted and if it enters into 

the reject state, the input is rejected by the TM. In some cases, it continues to 

run infinitely without being accepted or rejected for some certain input 

symbols. 

Note − Turing machines with semi-infinite tape are equivalent to standard 

Turing machines. 



 

5. A linear bounded automaton is a multi-track non-deterministic Turing 

machine with a tape of some bounded finite length. 

             Length = function (Length of the initial input string, constant c) 

Here, 

Memory information ≤ c × Input information 

The computation is restricted to the constant bounded area. The input alphabet 

contains two special symbols which serve as left end markers and right end 

markers which mean the transitions neither move to the left of the left end 

marker nor to the right of the right end marker of the tape. 

A linear bounded automaton can be defined as an 8-tuple (Q, X, ∑, q0, ML, 

MR, δ, F) where − 

Q is a finite set of states 

X is the tape alphabet 

∑ is the input alphabet 

q0 is the initial state 

ML is the left end marker 

MR is the right end marker where MR ≠ ML 

δ is a transition function which maps each pair (state, tape symbol) to (state, 

tape symbol, Constant ‘c’) where c can be 0 or +1 or -1 

F is the set of final states 

 

 
 

 

A deterministic linear bounded automaton is always context-sensitive and the 

linear bounded automaton with empty language is undecidable.. 

 

  4(b) Design a LALR parser. 

 

 

 

 

 

 

Solution:  
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5 (a) Write a note on the Church Turing Hypothesis and Problems that computers 

cannot solve.  

 

 

The Church Turing Thesis, also known as the Church's Thesis or Turing's 

Thesis, is a hypothesis in computer science that states any real-world 

computations can be translated into an equivalent computation involving 

a Turing machine. This conjecture represents the underpinning principle of 

modern computers. 

 

A quick glance at some practical applications of the Church Turing Thesis can 

help illuminate its importance: 

Design of Digital Computers: Digital computers function based on the 

principles laid down by the Church Turing Thesis. If there exists an algorithm 

to solve a problem, a computer can be programmed to implement that 

algorithm. 

Creation of Programming Languages: The design principles of almost all high-

level programming languages are also rooted in this thesis. They all allow for 

the expression of a general-purpose set of instructions — algorithms in other 

words — that a computer can execute. 

Fundamentals of Artificial Intelligence: When exploring artificial intelligence 

and machine learning, the Church Turing Thesis is often invoked. For instance, 

if a human intelligence process can be encapsulated as an algorithm, this thesis 

suggests a machine can be programmed to replicate that process. 

It's remarkably eye-opening to realise that from the commonplace laptop in 

your possession to the complex AI models, they echo the principles of this 
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impactful thesis, thereby, shedding light on its ubiquitous relevance and 

application. 

Church Turing Thesis Examples: Understanding Through Practice 

The interplay between theory and practice lies at the heart of the Church Turing 

Thesis. To grasp this abstract concept, concrete examples provide the perfect 

bridge. Each elucidates how real-world computations get abstracted into the 

realm of Turing Machines, guiding you on the path of mastery. Let's consider a 

simple but effective example. Imagine the process of baking a cake from a 

recipe. This is a step-by-step process that, in essence, is a real-world algorithm. 

Following the Church Turing Thesis, one can structure this process into a form 

that a Turing machine (or a computer) can comprehend and execute. 

Demystifying Church Turing Thesis with Effective Examples 

Consider the aforementioned example in more detail: 

Algorithm for Baking a Cake: 

1. Gather all ingredients 

2. Preheat the oven 

3. Mix ingredients 

4. Pour mixture into a pan 

5. Bake in the preheated oven 

Given this algorithm, let's construct a pseudocode mapping: 

BEGIN 

  IF ingredients present THEN 

    Preheat oven 

    Mix ingredients 

    Pour mixture into pan 

    Bake in oven 

  ELSE 

    Display 'Gather all ingredients first!' 

  END IF 

END 

This constructed pseudocode now translates the original algorithm into a format 

that a Turing Machine — or a modern computer — could execute (albeit 

metaphorically, since computers can't physically bake cakes). Through this 

example, you can start to understand the real power and practical application of 

the Church Turing Thesis. It's not merely an abstract concept, but a principle 

that provides the backbone for virtually all modern computation. So, whether 

you're considering a career in computer science, a related field, or simply 

looking for a deeper understanding of the digital world, the Church Turing 

Thesis provides fundamental insights into the mechanisms that drive modern 

computation. 

 

 

Problems that computers cannot solve. 

 

  
Programs that print “Hello, World”  
◼ A C program that prints “Hello, World” is:  

main()  
{  
print(“hello, world\n”);  
}  
⧫ Define a “hello, world problem” to be:  

 



 

Determine whether a given C program, with a given input, prints hello, world as the 

first 12 characters in what it prints.  

⧫ Describe the problem alternatively using symbols:  

 

Is there a program H that could examine any program P and any input I for P, and tell 

whether P, run with I as its input, would print hello, world?  

(A program H means an algorithm in concept here.)  

 The answer is: undecidable!  

 That is, there exists no such program H.  

 We can prove this by contradiction next.  

 

8.1.2 Hypothetical “Hello, World” Tester  
◼ We want to prove that no program H, called hypothetical “Hello, World” tester, as 

mentioned above exists by contradiction using the following steps.  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
Reducing One Problem to Another  

 
Now we have an undecidable problem, which can be used to prove other undecidable 

problems by a technique of problem reduction.  

 

⧫ That is, if we know P1 is undecidable, then we may reduce P1 to a new problem P2, 

so that we can prove P2 undecidable by contradiction in the following way  

 If P2 is decidable, then P1 is decidable.  

 But P1 is known undecidable. So, contradiction!  

 Consequently, P2 is undecidable.  

 

◼ An illustration of the above idea is illustrated in Fig. 8.4.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

  

  (b) Discuss three methods of evaluation order of a syntax-directed definition 

(SDD). 

 

Solution: 
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6 (a) Construct a Directed Acyclic Graph for the following expression:  

T1 = a + b 

T2 = a – b 

T3 = T1 * T2 

T4 = T1 – T3 

T5 = T4 + T3 
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Solution: 

 

 

  (b) Explain three address code. Design a quadruple, triple, and indirect triple for 

the expression d= b*-c - b*-c 
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Solution:  

 

Quadruple: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


