

USN

Internal Assessment Test 3 – March 2024

Sub: Automata Theory and Compiler Design
Sub

Code:
21CS51

Branch

:
ISE

Date: /3/2024 Duration: 90 min’s
Max

Marks:
50

Sem /

Sec:
V A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Obtain a PDA to accept the language.

i. L= {w(a+b)* | w such that w has an equal number of a’s and

b’s}

ii. L={anbn | n>=1} by a final state.

[2+2=4] CO3 L2

 (b) Discuss recursive descent parsing with a suitable example.

Recursuve descent parsing:

 [6] CO2 L3

2 (a) Design a Turing Machine and show its moves.

 [2] CO3 L2

 (b) Design a predictive parser for the following grammar. Show the stack

implementation for the input id+id*id. Construct a parse table by using FIRST

and FOLLOW algorithm.

E->E+T/T

T->T*F/F

[3+3+2=8]

CO2 L3

F->(E)/ id

3 (a) Construct a Turing Machine which accepts the language L= {0n1n | n>=1}.

Show the result of the moves using a transition table and the Turing Machine

model at the end.

[2+2=4] CO3 L2

 (b) What is a handle and Handle pruning? Design a shift-reduce parser for the

input string id+id*id following the production rules: E->E+E, E->E*E,

 E->(E), E->id

Solution: Handle Definition: Bottom-up parsing during a left-to-right scan of

the input constructs a right- most derivation in reverse. Informally, a “handle"

is a substring that matches the body of a production, and whose reduction

represents one step along the reverse of a rightmost derivation.

The table below shows the hnadles during parsing of id1*id2.

[2+4=6] CO2 L3

Handle pruning Definition: A rightmost derivation in reverse can be obtained

by \handle pruning." That is, we start with a string of terminals w to be parsed.

If w is a sentence

To reconstruct this derivation in reverse order, we locate the handle n in

n and replace n by the head of the relevant production An -> n to obtain

the previous right-sentential form n-1. If by continuing this process we

produce a right-sentential form consisting only of the start symbol

S, then we halt and announce successful completion of parsing. The reverse of

the sequence of productions used in the reductions is a rightmost derivation

for the input string.

Shift-reduce parser:

4 (a) Explain with neat diagrams the variants of the Turing machine.

1. Multi-tape Turing Machines have multiple tapes where each tape is

accessed with a separate head. Each head can move independently of

the other heads. Initially the input is on tape 1 and others are blank. At

first, the first tape is occupied by the input and the other tapes are kept

blank. Next, the machine reads consecutive symbols under its heads

and the TM prints a symbol on each tape and moves its heads.

 [6] CO3 L1

A Multi-tape Turing machine can be formally described as a 6-tuple (Q, X, B,

δ, q0, F) where −

Q is a finite set of states

X is the tape alphabet

B is the blank symbol

δ is a relation on states and symbols where

δ: Q × Xk → Q × (X × {Left_shift, Right_shift, No_shift })k

where there is k number of tapes

q0 is the initial state

F is the set of final states

Note − Every Multi-tape Turing machine has an equivalent single-tape Turing

machine.

2. Multi-track Turing machines, a specific type of Multi-tape Turing

machine, contain multiple tracks but just one tape head reads and

writes on all tracks. Here, a single tape head reads n symbols

from n tracks at one step. It accepts recursively enumerable languages

like a normal single-track single-tape Turing Machine accepts.

A Multi-track Turing machine can be formally described as a 6-tuple (Q,

X, ∑, δ, q0, F) where −

Q is a finite set of states

X is the tape alphabet

∑ is the input alphabet

δ is a relation on states and symbols where

δ(Qi, [a1, a2, a3,....]) = (Qj, [b1, b2, b3,....], Left_shift or Right_shift)

q0 is the initial state

F is the set of final states

Note − For every single-track Turing Machine S, there is an equivalent multi-

track Turing Machine M such that L(S) = L(M).

3. In a Non-Deterministic Turing Machine, for every state and symbol,

there are a group of actions the TM can have. So, here the transitions

are not deterministic. The computation of a non-deterministic Turing

Machine is a tree of configurations that can be reached from the start

configuration.

An input is accepted if there is at least one node of the tree which is an accept

configuration, otherwise it is not accepted. If all branches of the

computational tree halt on all inputs, the non-deterministic Turing Machine is

called a Decider and if for some input, all branches are rejected, the input is

also rejected.

A non-deterministic Turing machine can be formally defined as a 6-tuple (Q,

X, ∑, δ, q0, B, F) where −

Q is a finite set of states

X is the tape alphabet

∑ is the input alphabet

δ is a transition function;

δ : Q × X → P(Q × X × {Left_shift, Right_shift}).

q0 is the initial state

B is the blank symbol

F is the set of final states

4. Semi-infinite tape: A Turing Machine with a semi-infinite tape has a

left end but no right end. The left end is limited with an end marker.

It is a two-track tape −

• Upper track − It represents the cells to the right of the initial head

position.

• Lower track − It represents the cells to the left of the initial head

position in reverse order.

The infinite length input string is initially written on the tape in contiguous

tape cells.

The machine starts from the initial state q0 and the head scans from the left

end marker ‘End’. In each step, it reads the symbol on the tape under its head.

It writes a new symbol on that tape cell and then it moves the head either into

left or right one tape cell. A transition function determines the actions to be

taken.

It has two special states called accept state and reject state. If at any point of

time it enters into the accepted state, the input is accepted and if it enters into

the reject state, the input is rejected by the TM. In some cases, it continues to

run infinitely without being accepted or rejected for some certain input

symbols.

Note − Turing machines with semi-infinite tape are equivalent to standard

Turing machines.

5. A linear bounded automaton is a multi-track non-deterministic Turing

machine with a tape of some bounded finite length.

 Length = function (Length of the initial input string, constant c)

Here,

Memory information ≤ c × Input information

The computation is restricted to the constant bounded area. The input alphabet

contains two special symbols which serve as left end markers and right end

markers which mean the transitions neither move to the left of the left end

marker nor to the right of the right end marker of the tape.

A linear bounded automaton can be defined as an 8-tuple (Q, X, ∑, q0, ML,

MR, δ, F) where −

Q is a finite set of states

X is the tape alphabet

∑ is the input alphabet

q0 is the initial state

ML is the left end marker

MR is the right end marker where MR ≠ ML

δ is a transition function which maps each pair (state, tape symbol) to (state,

tape symbol, Constant ‘c’) where c can be 0 or +1 or -1

F is the set of final states

A deterministic linear bounded automaton is always context-sensitive and the

linear bounded automaton with empty language is undecidable..

 4(b) Design a LALR parser.

Solution:

 [4] CO2 L3

5 (a) Write a note on the Church Turing Hypothesis and Problems that computers

cannot solve.

The Church Turing Thesis, also known as the Church's Thesis or Turing's

Thesis, is a hypothesis in computer science that states any real-world

computations can be translated into an equivalent computation involving

a Turing machine. This conjecture represents the underpinning principle of

modern computers.

A quick glance at some practical applications of the Church Turing Thesis can

help illuminate its importance:

Design of Digital Computers: Digital computers function based on the

principles laid down by the Church Turing Thesis. If there exists an algorithm

to solve a problem, a computer can be programmed to implement that

algorithm.

Creation of Programming Languages: The design principles of almost all high-

level programming languages are also rooted in this thesis. They all allow for

the expression of a general-purpose set of instructions — algorithms in other

words — that a computer can execute.

Fundamentals of Artificial Intelligence: When exploring artificial intelligence

and machine learning, the Church Turing Thesis is often invoked. For instance,

if a human intelligence process can be encapsulated as an algorithm, this thesis

suggests a machine can be programmed to replicate that process.

It's remarkably eye-opening to realise that from the commonplace laptop in

your possession to the complex AI models, they echo the principles of this

 [4] CO4 L1

impactful thesis, thereby, shedding light on its ubiquitous relevance and

application.

Church Turing Thesis Examples: Understanding Through Practice

The interplay between theory and practice lies at the heart of the Church Turing

Thesis. To grasp this abstract concept, concrete examples provide the perfect

bridge. Each elucidates how real-world computations get abstracted into the

realm of Turing Machines, guiding you on the path of mastery. Let's consider a

simple but effective example. Imagine the process of baking a cake from a

recipe. This is a step-by-step process that, in essence, is a real-world algorithm.

Following the Church Turing Thesis, one can structure this process into a form

that a Turing machine (or a computer) can comprehend and execute.

Demystifying Church Turing Thesis with Effective Examples

Consider the aforementioned example in more detail:

Algorithm for Baking a Cake:

1. Gather all ingredients

2. Preheat the oven

3. Mix ingredients

4. Pour mixture into a pan

5. Bake in the preheated oven

Given this algorithm, let's construct a pseudocode mapping:

BEGIN

 IF ingredients present THEN

 Preheat oven

 Mix ingredients

 Pour mixture into pan

 Bake in oven

 ELSE

 Display 'Gather all ingredients first!'

 END IF

END

This constructed pseudocode now translates the original algorithm into a format

that a Turing Machine — or a modern computer — could execute (albeit

metaphorically, since computers can't physically bake cakes). Through this

example, you can start to understand the real power and practical application of

the Church Turing Thesis. It's not merely an abstract concept, but a principle

that provides the backbone for virtually all modern computation. So, whether

you're considering a career in computer science, a related field, or simply

looking for a deeper understanding of the digital world, the Church Turing

Thesis provides fundamental insights into the mechanisms that drive modern

computation.

Problems that computers cannot solve.

Programs that print “Hello, World”
◼ A C program that prints “Hello, World” is:

main()
{
print(“hello, world\n”);
}
⧫ Define a “hello, world problem” to be:

Determine whether a given C program, with a given input, prints hello, world as the

first 12 characters in what it prints.

⧫ Describe the problem alternatively using symbols:

Is there a program H that could examine any program P and any input I for P, and tell

whether P, run with I as its input, would print hello, world?

(A program H means an algorithm in concept here.)

 The answer is: undecidable!

 That is, there exists no such program H.

 We can prove this by contradiction next.

8.1.2 Hypothetical “Hello, World” Tester
◼ We want to prove that no program H, called hypothetical “Hello, World” tester, as

mentioned above exists by contradiction using the following steps.

Reducing One Problem to Another

Now we have an undecidable problem, which can be used to prove other undecidable

problems by a technique of problem reduction.

⧫ That is, if we know P1 is undecidable, then we may reduce P1 to a new problem P2,

so that we can prove P2 undecidable by contradiction in the following way

 If P2 is decidable, then P1 is decidable.

 But P1 is known undecidable. So, contradiction!

 Consequently, P2 is undecidable.

◼ An illustration of the above idea is illustrated in Fig. 8.4.

 (b) Discuss three methods of evaluation order of a syntax-directed definition

(SDD).

Solution:

 [6] CO2 L3

6 (a) Construct a Directed Acyclic Graph for the following expression:

T1 = a + b

T2 = a – b

T3 = T1 * T2

T4 = T1 – T3

T5 = T4 + T3

 [5] CO2 L3

Solution:

 (b) Explain three address code. Design a quadruple, triple, and indirect triple for

the expression d= b*-c - b*-c

.

 [5] CO2 L3

Solution:

Quadruple:

