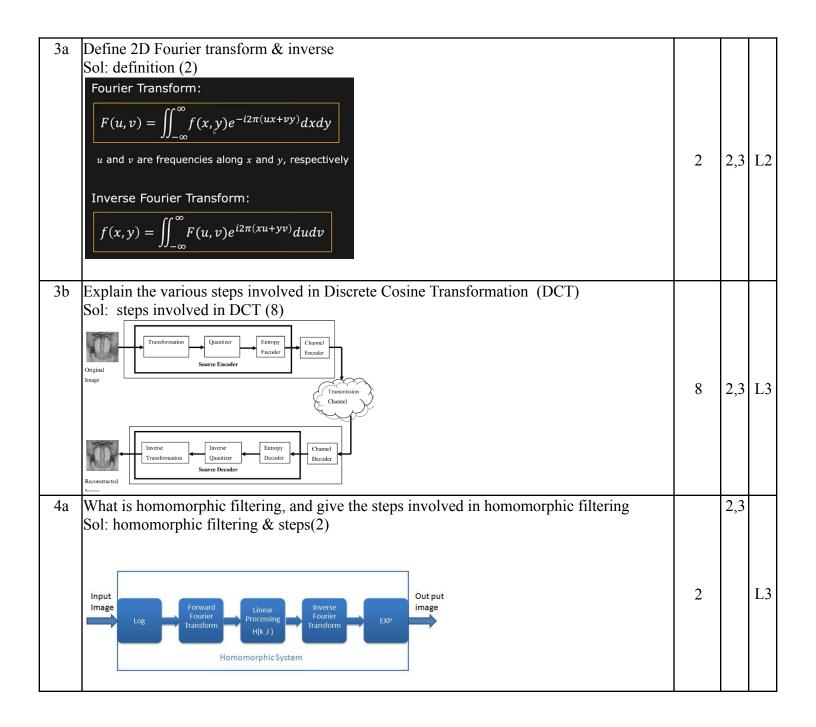


USN


Internal Assessment Test 3 – Jan 2024 SOLUTION AND SCHEME

Sub:	Digital Imag	ge Processin	g			Sub Code:	18CS741	Branch :	CSE		
Date:		Duration:	90 mins	Max Marks:	50	Sem / Sec:	7(A,B,C)			OE	BE
	Answer any FIVE FULL Questions						MA RK S	C O	R B T		
	List out the values Sol: Steps involution $Pre-processing$ f(x, y) Input image	Fourier transform	Filter function H(u, v) (v) $H(v)$	filtering in fr Inverse Fourier transform u, v)F(u, v)	Proc g(- Enh	ncy domain			2	2,3	L2
	frequency dom Sol: (2) Smoothing is components. T	achieved i achieved i The basic model h(u,v) = H(u,v) is the Fouri	nage n the freque odel for filte F(u,v)	ering is:	ı by	dropping of	out the high	frequenc	y 2	2,3	L3

2a	Define 1D & inverse Fourier transform			
	Sol: definition (2) Fourier Transform: $F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux} dx$ $x: \text{ space}$ $u: \text{ frequency}$ $e^{i\theta} = \cos \theta + i \sin i = \sqrt{-1}$ Inverse Fourier Transform: $f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi ux} du$	2	2,3	L2
2b	 What is the techniques of image sharpening and explain how it is achieved in the frequency domain of an image. Sol: (2) Edges and fine detail in images are associated with high frequency components hence image sharpening can achieved in the frequency domain by highpass filtering <i>High pass filters</i> – only pass the high frequencies, drop the low ones High pass frequencies are precisely the reverse of low pass filters 	2	2,3	L3

2c Suppose you have an image given below, explain how sharpening can be achieved by various frequency domain filters and discuss on the outputs. (with result of filtering of cutoff distance $D_0 = 15$) a a a a a a a a a a a a a a a a a a a 		
(a) High pass filters.(2) The ideal high pass filter is given as:		
where D ₀ is the cut off distance as before $ \underbrace{H_{(k,r)}}_{n \to \infty} \underbrace{\prod_{i=1}^{H_{(k,r)}}}_{i=1} \underbrace{\prod_{i=1}^{H_{(k,r)}}}_{D_{(k,r)}} $	6	2,3 L3
(b) Butterworth high pass filters (2) The Butterworth high pass filter is given as: $H(u,v) = \frac{1}{1 + [D_0 / D(u,v)]^{2n}}$		
where <i>n</i> is the order and D_0 is the cut off distance as before		
(c) Gaussian high pass (2) The Gaussian high pass filter is given as:		
$H(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$		
where D_{θ} is the cut off distance as before		
Result analysis of image		

4b Define laplacian in frequency domain.		2,3	
Sol:			
Topic Name : Laplacian in the Frequency Domain			
Spatial-domain Laplacian (2nd derivative)			
$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$			
• Fourier transform			
$\Im\left[\frac{\partial^n f(x)}{\partial x^n}\right] = (ju)^n F(u)$			
$\Im\left[\frac{\frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}}{\left(u^2 + v^2\right)F(u, y)}\right] = (ju)^2 F(u, y) + (jv)^2 F(u, y)$	2		L2
	2		112
Topic Name : Laplacian in the Frequency Domain $H(u,v) = -(u^2+v^2)$			
4c Explain the following properties of Fourier Transform			
a) translation			
		2,3	
b) rotation		2,3	
c) periodicity			
Sol: properties (2*3=6m)			
Translation and Rotation			
Multiplying $f(x,y)$ by the exponential shifts the original of DFT to (u_0, v_0) .			
Multiplying $F(u,v)$ by the exponential shifts the original of (x,y) to (x_0, y_0) .	6		та
$f(x - x_0, y - y_0) \Leftrightarrow F(u, v) e^{j2\pi(x_0 u/M + y_0 v/N)}$	6		L2
$F(u-u_0, v-v_0) \Leftrightarrow f(x, y)e^{-j2\pi(u_0x/M+v_0y/N)}$			
Periodicity			
The Fourier transform and inverse are infinitely periodic on the u and v directions. (k1			
and k2 are integers).			
$F(u, v) = F(u + k_1M, v) = F(u, v + k_2N)$ = F(u + k_1M, v + k_2N)			
$f(x, y) = f(x + k_1M, y) = f(x, y + k_2N)$			
$= f(x+k_1M, y+k_2N)$			
To show the origin of $F(u,v)$ at the center we shift the data by $M/2$ and $N/2$			
$f(x, y)(-1)^{x+y} = F(n+M/2, v+N/2)$		1	

5a	Explain about			
	a) region growing mechanism in image segmentation		2,3	
	b) region splitting and merging mechanism in image segmentation			
	Sol:			
	Region growing (5)			
	• It is a process of grouping the pixels or subregions to get a bigger region present in an image			
	•Selection of the initial seed: Initial seed that represent the ROI should be given typically by the user. Can be chosen automatically. The seeds can be either single or multiple			
	•Seed growing criteria: Similarity criterion denotes the minimum difference in the grey levels or the average of the set of pixels. Thus, the initial seed 'grows' by adding the neighbours if they share the same properties as the initial seed			
	•Terminate process: If further growing is not possible then terminate region growing process			
	Region splitting and merging (5)			
	The main problem with region splitting is determining where to rolit a radius	10		L3
	 split a region. One method to divide a region is to use a quadtree structure. 			
	Quadtree: a tree in which nodes have exactly four descendants.			
	a b FOURT 10.42 (a) Participandi image. (b) Corresponding quadtree. $ \begin{array}{c c} R_1 & R_2 \\ \hline R_3 & R_4 & R_6 \\ \hline R_3 & R_4 \end{array} $ $ \begin{array}{c c} R_1 & R_2 \\ \hline R_2 & R_3 & R_4 \end{array} $			
	The split and merge procedure:			
	- Split into four disjoint quadrants any region R_i for which $P(R_i) = FALSE$.			
	– Merge any adjacent regions R_j and R_i for which			
	$P(R_{\rm i} {\rm UR}_{\rm i}) = {\rm TRUE}$. (the quadtree structure may not			
	a b c be preserved) Figure 10-43 (a) Oriaus Stop when no further merging or splitting is procedure. prossible. (c) Result of thresholding (a).			

6a Explain about variable threshold and basic global threshold Sol:		2,3	
Basic global threshold (2)			
Iterative algorithm for <u>automatic</u> estimation of threshold T :			
(1) Select an initial estimate for T			
(2) Segment image using $T \longrightarrow \begin{array}{l} \text{Group } G_1 \text{ (values } > T) \\ \text{Group } G_2 \text{ (values } \leq T) \end{array}$			
(3) Compute average intensity values for $G_1, G_2 \longrightarrow m_1, m_2$	4		L3
(4) Compute a new threshold value $T = \frac{1}{2}(m_1 + m_2)$	4		
(5) Repeat (2) through (4) until the difference in T in successive iterations is smaller than ΔT			
Average intensity is good initial estimate for T			
Variable threshold (2)			
The variable threshold method sets a lower threshold for an image that is out of focus and a higher threshold for when the particle is in focus. This results in less change in reported area when the particle focus changes.			
6b Given an image, discuss on how automatic image thresholding can be achieved using Otsu's method.	5	2,3	
32 200 180 64 255			
Sol: (6) Otsu's method			
Otsu's method (1979) maximizes between-class variance			
Based entirely on computations performed on histogram (1-D) of image	6		L3
Summary of Otsu's algorithm			
(1) Compute normalized histogram of the image, $p_i = \frac{n_i}{MN}$, $i = 0,, L-1$			
(2) Compute cumulative sums, $P_1(k) = \sum_{i=0}^{k} p_i, \ k = 0, \dots, L-1$			
(3) Compute cumulative means, $m(k) = \sum_{i=0}^{k} i p_i, \ k = 0, \dots, L-1$			
(4) Compute global intensity mean, $m_G = \sum_{i=0}^{L-1} i p_i$			
(5) Compute between-class variance, $\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}, \ k = 0, ., L-1$			
(6) Obtain the Observe threshold k^* that is the upday of k for orbits $-\frac{2}{k}$ is			
(6) Obtain the Otsu threshold, k*, that is the value of k for which \(\sigma_B^2(k^*)\) is a maximum - if this maximum is not unique, obtain \(k^*\) by avaraging the values of k that correspond to the various maxima detected			