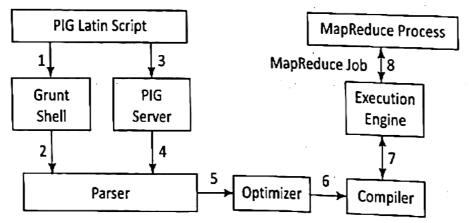
USN

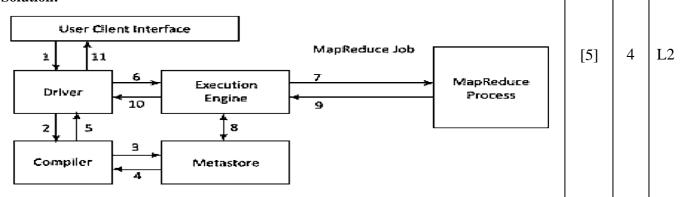
			Interna	Assessment Scheme of E			24				
Sub:	BIG DATA	and ANAI	YTICS	Scheme of E	zvaru	Sub Code:	18CS72		Branch:	ISI	 E
Date:	02/01/2024	Duration:	90 min	Max Marks:	50	Sem/Sec:		A, B &			BE
			swer any F	IVE FULL Q	uest				MARKS		RBT
1.	i.Create a da	atabase nar able toy_pr	ned toys_c oducts wit	he following: ompanyDB and the following	g fie		oys_tbl				
		Fie		Data Ty	_						
		ProductC		string							
		Produc Produc		Int String							
		Produc		Float							
	Scheme and i.Create a dat			npanyDB and	table	named toys_	tbl		[5]	4	L3
	\$H	IVE_HOM	E/binhive	– service cli							
	hiv	/e>set hive	.cli.print.	current.db=tr	rue;						
	hiv	e> CREAT	E DATABA	SE toys_com	pany	DB					
	hiv	e>USE toy	s_compan	yDB							
	hiv	ve (toys_co	mpanyDB)> CREATE TA	ABLE	toys_tbl (
	>pı	uzzle_code	STRING,								
	>pi	ieces SMAI	LLINT								
	>C0	ost FLOAT)	;								
	hiv	ve (toys_cc	mpany)>	quit;							
	&ls	s/home/bi	nadmin/H	Iive/warehou	ıse/t	toys_compa	nyDB.db				
				th the followin	_		ategory Si	tring,			
	ProductId	int, Produ	ctName St	ring, Product	tPric	e float)					
	COMMEN	T 'Toy deta	ails'								
	ROW FOR	MAT DELIN	MITED								
	FIELDS TE	RMINATE	DBY '\t'								
	LINES TER	RMINATED	BY '\n'								
	STORED A	S TEXTFIL	E:								

Scheme and Solution: 2+1+1+1 Marks		
SELECT t.ProductId, t.ProductName, p.ProductPrice		
FROM toy_tbl t JOIN price p		
ON (t.ProductId = p.Id);	[5]	
SELECT t.ProductId, t.ProductName, p.ProductPrice	[0]	
FROM toy_tbl t LEFT OUTER JOIN price p		
ON (t.ProductId = p.Id);		
SELECT t.ProductId, t.ProductName, p.ProductPrice		
FROM toy_tbl t FULL OUTER JOIN price p		
ON (t.ProductId = p.Id);		
SELECT t.ProductId, t.ProductName, p.ProductPrice		
FROM toy_tbl t RIGHT OUTER JOIN price p		
ON (t.ProductId = p.Id);		
 Scheme: Explanation+Diagram-7+3 marks Solution: Apriori algorithm is used for frequent itemset mining and association rule mining. 		
Solution: • Apriori algorithm is used for frequent itemset mining and association rule		
 Apriori algorithm is used for frequent itemset mining and association rule mining. Apriori algorithm is considered as one of the most well-known association rule algorithms. The algorithm simply follows a basis that any subset of a large itemset must be a large itemset. This basis can be formally given as the 		
 Apriori algorithm is used for frequent itemset mining and association rule mining. Apriori algorithm is considered as one of the most well-known association rule algorithms. The algorithm simply follows a basis that any subset of a large itemset must be a large itemset. This basis can be formally given as the Apriori principle. Apriori – Example TID Items	[10]	5
 Apriori algorithm is used for frequent itemset mining and association rule mining. Apriori algorithm is considered as one of the most well-known association rule algorithms. The algorithm simply follows a basis that any subset of a large itemset must be a large itemset. This basis can be formally given as the Apriori principle. Apriori – Example TID Items 1	[10]	5
 Apriori algorithm is used for frequent itemset mining and association rule mining. Apriori algorithm is considered as one of the most well-known association rule algorithms. The algorithm simply follows a basis that any subset of a large itemset must be a large itemset. This basis can be formally given as the Apriori principle. Apriori – Example TID Items	[10]	5

	Scheme: Cliques discover expl marks Solution:	lanation with diagram + parameters explanation: 5+5			
		ommunities from a social graph: set of vertices when each of the vertices directly connects to every other individual vertex e cliques leads to direct discovery of communities.			
	2. Structurally cohesive blocks.				
	3. Social circles from connections	and neighbourhoods			
	Clique	Bridge Clique 1	[10]	6	I
	Parameters in social gran	ph network topological analysis using centralities and			
	PageRank are:	prince work topological analysis asing contraines and			
ļ	Degree, Closeness, Eff	fective Closeness, Betweenness, pageRank, Contacts size,			
	_				
4.	Indirect contacts, Structu Explain five phases in a l	ure Diversity Process pipeline for Text Mining.			<u> </u>
4.	Indirect contacts, Structor Explain five phases in a I Scheme: Diagram+ Explain Solution:	Process pipeline for Text Mining. anation of each phase-2+2+2+2 marks			
4.	Indirect contacts, Structu Explain five phases in a l Scheme: Diagram+ Explain	ure Diversity Process pipeline for Text Mining.			
4.	Explain five phases in a I Scheme: Diagram+ Explain Solution: 1. Text Pre-processing	Process pipeline for Text Mining. anation of each phase-2+2+2+2 marks 2. Features Generation • Bag of words • Reduce Group Process pipeline for Text Mining. 4. Data Mining Results • Clustering • Visualization			
4.	Explain five phases in a I Scheme: Diagram+ Explain Solution: 1. Text Pre-processing Text Cleanup Tokenization	Process pipeline for Text Mining. anation of each phase-2+2+2+2 marks 2. Features Generation Bag of words Stemming Results Clustering (Unsupervised) Interpretation	[10]	6	
4.	Explain five phases in a I Scheme: Diagram+ Explain Solution: 1. Text Pre-processing Text Cleanup	Process pipeline for Text Mining. anation of each phase-2+2+2+2 marks 2. Features Generation Bag of words Stemming Removing 3. Features Selection Clustering (Unsupervised) Classification Interpretation	[10]	6	
4.	Explain five phases in a I Scheme: Diagram+ Expl: Solution: 1. Text Pre-processing Text Cleanup Tokenization	Process pipeline for Text Mining. anation of each phase-2+2+2+2 marks 2. Features Generation Bag of words Stemming Removing Stop words 3. Features Selection Clustering (Unsupervised) Classification (Supervised) 1. Data Mining Results Visualization Interpretation	[10]	6	
4.	Explain five phases in a I Scheme: Diagram+ Explain Solution: 1. Text Pre-processing Text Pre-processing Text Vord Sense disambiguation	Process pipeline for Text Mining. anation of each phase-2+2+2+2 marks 2. Features Generation Bag of words Stemming Removing Stop words Vector Space 3. Features Selection Clustering (Unsupervised) Classification (Supervised) Classification Supervised)	[10]	6	
4.	Explain five phases in a I Scheme: Diagram+ Explain Solution: 1. Text Pre-processing Text Pre-processing Text Vord Sense disambiguation	Process pipeline for Text Mining. anation of each phase-2+2+2+2 marks 2. Features Generation Bag of words Stemming Removing Stop words 3. Features Selection Clustering (Unsupervised) Classification (Supervised) 1. Data Mining Results Visualization Interpretation	[10]	6	
4.	Explain five phases in a I Scheme: Diagram+ Explain Solution: 1. Text Pre-processing Text Pre-processing Text Vord Sense disambiguation	Process pipeline for Text Mining. anation of each phase-2+2+2+2 marks 2. Features Generation Bag of words Stemming Removing Stop words Vector Space Model 3. Features Selection Reduce dimensionality N-grams 4. Data Mining Clustering (Unsupervised) Classification (Supervised) Interpretation	[10]	6	
4.	Explain five phases in a I Scheme: Diagram+ Explain Solution: 1. Text Pre-processing Text Pre-processing Text Vord Sense disambiguation	Process pipeline for Text Mining. anation of each phase-2+2+2+2 marks 2. Features Generation Bag of words Stemming Removing Stop words Vector Space 3. Features Selection Clustering (Unsupervised) Classification (Supervised) Classification Supervised)	[10]	6	
4.	Explain five phases in a I Scheme: Diagram+ Explain Solution: 1. Text Pre-processing Text Text Processing Text Cleanup Tokenization POS Tagging Word Sense disambiguation Parsing	Process pipeline for Text Mining. anation of each phase-2+2+2+2 marks 2. Features Generation Bag of words Stemming Removing Stop words Vector Space Model 3. Features Selection Reduce dimensionality N-grams 4. Data Mining Results Visualization Interpretation To Application	[10]	6	
4.	Explain five phases in a I Scheme: Diagram+ Explain Solution: 1. Text Pre-processing Text Text Processing Text Cleanup Tokenization POS Tagging Word Sense disambiguation Parsing	Process pipeline for Text Mining. anation of each phase-2+2+2+2 marks 2. Features Generation Bag of words Stemming Removing Stop words Vector Space Model 3. Features Selection Reduce dimensionality N-grams 4. Data Mining Clustering (Unsupervised) Classification (Supervised) Interpretation	[10]	6	
5.	Explain five phases in a I Scheme: Diagram+ Explain Solution: 1. Text Pre-processing Text Pre-processing Text Vord Sense disambiguation Parsing	Process pipeline for Text Mining. anation of each phase-2+2+2+2 marks 2. Features Generation Bag of words Stemming Removing Stop words Vector Space Model 3. Features Selection Reduce dimensionality N-grams 4. Data Mining Results Visualization Interpretation To Application	[10]	6]


Applications of Pig are: • Analyzing large datasets

- Executing tasks involving adhoc processing
- Processing large data sources such as web logs and streaming online data
- Data processing for search platforms. Pig processes different types of data


Features:

- Allows programmers to write fewer lines of codes. Programmers can write 200 lines of Java code in only ten lines using the Pig Latin language.
- Apache Pig multi-query approach reduces the development time.
- Apache pig has a rich set of datasets for performing operations like join, filter, sort, load, group, etc.
- Pig Latin language is very similar to SQL. Programmers with good SQL knowledge find it easy to write Pig script.
- Allows programmers to write fewer lines of codes. Programmers can write 200 lines of Java code in only ten lines using the Pig Latin language.
- Apache Pig handles both structured and unstructured data analysis.

Architecture:

6. **a.** Explain Hive dataflow sequences and Workflow steps. Scheme: Diagram+Explanation - 2+3 marks
Solution:

1	Execute Query : Hive interface (CLI or Web In Driver to execute the query.	nterface) sends a query to Database	
2	Get Plan: Driver sends the query to query co the syntax and query plan or the requiremen		-
3	Get Metadata: Compiler sends metadata req such as MySQL).	uest to Metastore (of any database,	-
4	Send Metadata: Metastore sends metadata a	s a response to compiler.	-
5	Send Plan: Compiler checks the requiremen parsing and compiling of the query is comple		
6	Execute Plan: Driver sends the execute plan	to execution engine.	
7	Execute Job: Internally, the process of execute execution engine sends the job to JobTracker assigns this job to TaskTracker, which is in D the job.	r, which is in Name node and it	
8	Metadata Operations: Meanwhile the execumetadata operations with Metastore.	ition engine can execute the	
9	Fetch Result: Execution engine receives the	results from Data nodes.	_
10	Send Results: Execution engine sends the re	sult to Driver.	_
11	Send Results: Driver sends the results to Hiv	ve Interfaces.	
Scheme	rentiate between: Pig vs SQL and Pig vs Hiv : Differences between Pig vs SQL & Pig vs H		-
	: Differences between Pig vs SQL & Pig vs H		-
Scheme Solution	: Differences between Pig vs SQL & Pig vs H	live – 2+3 Marks	
Scheme Solution Pig Lati	e: Differences between Pig vs SQL & Pig vs H i: Pig in is a procedural language a is optional, stores data without assigning a	live – 2+3 Marks	
Scheme Solution Pig Lati	e: Differences between Pig vs SQL & Pig vs H i: Pig in is a procedural language a is optional, stores data without assigning a	SQL A declarative language	[5]
Scheme Solution Pig Lati Schema schema Nested	e: Differences between Pig vs SQL & Pig vs Hen: Pig in is a procedural language a is optional, stores data without assigning a	SQL A declarative language Schema is mandatory	[5]
Scheme Solution Pig Lati Schema schema Nested	e: Differences between Pig vs SQL & Pig vs Han: Pig in is a procedural language a is optional, stores data without assigning a relational data model	SQL A declarative language Schema is mandatory Flat relational data model More opportunity for query	[5]
Pig Lati Schema schema Nested	e: Differences between Pig vs SQL & Pig vs Ha: Pig in is a procedural language a is optional, stores data without assigning a relational data model es limited opportunity for Query optimization	SQL A declarative language Schema is mandatory Flat relational data model More opportunity for query optimization	[5]
Pig Lati Schema schema Nested Provide	e: Differences between Pig vs SQL & Pig vs Han: Pig in is a procedural language a is optional, stores data without assigning a relational data model es limited opportunity for Query optimization	SQL A declarative language Schema is mandatory Flat relational data model More opportunity for query optimization Hive	[5]
Pig Lati Schema schema Nested Provide Origin Exploi	e: Differences between Pig vs SQL & Pig vs Ha: Pig in is a procedural language a is optional, stores data without assigning a relational data model es limited opportunity for Query optimization Pig ally created at Yahoo	SQL A declarative language Schema is mandatory Flat relational data model More opportunity for query optimization Hive Originally created at Facebook	[5]
Scheme Solution Pig Lati Schema schema Nested Provide Origin Exploi Pig Lati	e: Differences between Pig vs SQL & Pig vs Ha: Pig In is a procedural language a is optional, stores data without assigning a larelational data model es limited opportunity for Query optimization Pig ally created at Yahoo ts Pig Latin language tin is a dataflow language tin is a procedural language and it fits in pipelin	SQL A declarative language Schema is mandatory Flat relational data model More opportunity for query optimization Hive Originally created at Facebook Exploits HiveQL HiveQL is a query processing language	[5]

Faculty Signature CCI Signature HOD Signature