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. - the new closest centroid of
3 7 32 each cluster. (4)
4 6.4 32
5 6.3 33
6 5.8 24
6  f) Explain locally weighted linear regression. (5m) 10 @) Explanation (5M)

b) Explanation (5M)

b) Write a note on Q-learning(5m)




a) Write an algorithm for back propagation which uses stochastic gradient descent method.

BACKPROPAGATION (training_example, 1), Ny, Nous, Nhidden)

Each training example is a pair of the form (X, t ), where (% ) is the vector of network input
values, (F ) and is the vector of target network output values.
)] is the learning rate (e.g., .05). ny is the number of network inputs, Naiaze, the number of units

in the hidden layer, and ny: the number of output units.
The input from unit i into unit j is denoted x;; and the weight from unit i to unit j is denoted
Wii

o Create a feed-forward network with n; inputs, nyaaen hidden units, and ny; output units.
o Initialize all network weights to small random numbers
¢ Until the termination condition is met, Do

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term (5;\.
(5;‘. < (),(.(1 =t ();_.) (f;_. — ();,.)

y unit

3. For each hidden unit /4, calculate its error term (5;,

op «—op(l —op) T wph ok
Leoutputs

4. Update each network weight wy;

Wiji <— Wiji + A wiji
Where
AWi = 1)0;;

b) Derive the back propagation rule considering the output layer and training rule for output unit
weights.

Case 1: Training Rule for Output Unit Weights.
* w,can influence the rest of the network only through net,, net.can influence the

network only through 0,

Therefore, we can invoke the chain rule again to write



BEd _ BEd 3Dj
dnet;  do; dnet;

To begin, consider just the first term in Equation (3)

E a 1
5 4 = ;s Z (tx — ox)?
Oj oF keoutputs

The derivatives 32-(#x —ox)? will be zero for all output units £ except when k = .
We therefore drop the summation over output units and simply set £ = j.

dE, g 1 2
= ——(tj — 0
80; — Doy 3 T8
a(t; — o;)
—— ——2 t: — O; Agﬁi—ggai_
2 (J J) 30_,'
= —@G -0 equ(4)
Next consider the second term in Equation ( 3). Since o; = o(net;), the
derivative 2% js just the derivative of the sigmoid function, which we have

dnet;
already noted is equal to o(net;)(1 — o(net;)). Therefore,

do; _ do(net;)
dnet;  Onet;
f— Oj(l e Oj) ....... equ(S)

Substituting expressions (4) and ( 5) into (3), we obtain

DE,

dner; =y —ap) opll—aey 0 —equ{6)

and combining this with Equations (1) and (2), we have the stochastic
gradient descent rule for output units

= = n (fj — Oj) Oj(l —oj)x_,',- ....... equ(7)

Case 2: Training Rule for Hidden Unit Weights.

* In the case where j is an internal, or hidden unit in the network, the derivation of the training rule
for w must take into account the indirect ways in which w can influence the network outputs and
ji ji
hence E .
d

* For this reason, we will find it useful to refer to the set of all units immediately downstream

ofunit j in the network and denoted this set of units by Downstream( j).

* net can influence the network outputs only through the units in Downstream(j).
Jj



Therefore, we can write

OE 4 . AE, Onety
dnet; - keDownsrreamU)Bnetk Anet;
_ Z 5 Irnet
ke Dowasirean () onet;

nety 9o;

— — 8z Bl
keDownstream(G) 30j anetj
do;
= E —Sk wk,- L
Inet;
keDownstream(G) J
= E —&r wi; o; (1 —oy) equ (8)
ke Downstream(G)
i z . . 2Eg
Rearranging terms and using §; to denote Bres > WE have
8; = o0;(1 — o) E Sr wij

ke Downstream(j)
and

Aw_,-,— = 6_,' Xjii

a) Explain Brute-Force Map Learning algorithm (6m)

1. For each hypothesis h in H, calculate the posterior probability

: . P(D\h)P(h)
P(h|D) = ——
P(D)
2. Output the hypothesis hmar with the highest posterior probability
fr_1”r_|| P = argrr Jr"l_fr 1":"]
h &= H

In order specify a learning problem for the BRUTE-FORCE MAP LEARNING algorithm we must
specify what values are to be used for P(h) and for P(D|h) ?

Let’s choose P(h) and for P(DJh) to be consistent with the following assumptions:

- The training data D is noise free (i.e., di= c(xi))
- The target concept c is contained in the hypothesis space H

- Do not have a priori reason to believe that any hypothesis is more probable than any other.
What values should we specify for P(h)?

- Given no prior knowledge that one hypothesis is more likely than another, it is
reasonable to assign the same prior probability to every hypothesis h in H.

- Assume the target concept is contained in H and require that these prior probabilities sum to
L.

I
P R p— &
Pih) H forallh e H



What choice shall we make for P(D|h)?

- P(DJh) is the probability of observing the target values D = (d1. . .dm) for the fixed set
of instances (X1 . . . Xm), given a world in which hypothesis h holds

- Since we assume noise-free training data, the probability of observing classification di given
his just 1 if di=h(xi) and 0 if di # h(xi). Therefore,
1 ifd, =hix,)forall d; [}

P{D|k) =
0 otherwise

Given these choices for P(h) and for P(D|h) we now have a fully-defined problem for the above
BRUTE-FORCE MAP LEARNING algorithm.

b) Write Bayes theorem and explain Maximum a Posteriori (MAP) Hypothesis and Maximum
Likelihood (ML) Hypothesis(4m)

BAYES THEOREM

Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior
probability, the probabilities of observing various data given the hypothesis, and the observed data

itself.

Notations

- P(h) prior probability of h, reflects any background knowledge about the chance that h
is correct

- P(D) prior probability of D, probability that D will be observed
- P(DJh) probability of observing D given a world in which h holds

- P(h|D) posterior probability of h, reflects confidence that h holds after D has been

observed
Bayes theorem is the cornerstone of Bayesian learning methods because it provides a way to

calculate the posterior probability P(h|D), from the prior probability P(h), together with P(D) and
P(D|h).

Baves 'heorem:
F{Dh)Fh)
P{D)
- P(h|D) increases with P(h) and with P(DJh) according to Bayes theorem.

- P(h|D) decreases as P(D) increases, because the more probable it is that D will be
observed independent of h, the less evidence D provides in support of h.

Plih|l)) =

Maximum a Posteriori (MAP) Hypothesis

In many learning scenarios, the learner considers some set €of candidate hypotheses H and is



interested in finding the most probable hypothesis h H given the observed data D. Any such
maximally probable hypothesis is called a maximum a posteriori (MAP) hypothesis.

Bayes theorem to calculate the posterior probability of each candidate hypothesis is hMAP is a
MAP hypothesis provided

 P(D) can be dropped, because it is a constant independent of h

Maximum Likelihood (ML) Hypothesis

- In some cases, it is assumed that every hypothesis in H is equally probable a
priori (P(hi) = P(hj) for all hi and hjin H).
- In this case the below equation can be simplified and need only consider the term P(DJh) to find
the most probable hypothesis.

P(DJh) is often called the likelihood of the data D given h, and any hypothesis that maximizes P(D/h) is
called a maximum likelihood (ML) hypothesis

a) Explain Bayesian Belief Networks and conditional independence with example(5m)

A Bayesian belief network describes the probability distribution governing a set of variables by
specifying a set of conditional independence assumptions along with a set of conditional
probabilities. Bayesian belief networks allow stating conditional independence assumptions that
apply to subsets of the variables

Representation

A Bayesian belief network represents the joint probability distribution for a set of variables.
Bayesian networks (BN) are represented by directed acyclic graphs.

BusTourGroup

‘

The Bayesian network in above figure represents the joint probability distribution over the boolean
variables Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup
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A Bayesian network (BN) represents the joint probability distribution by specifying a set of
conditionalindependence assumptions.

¢ BN represented by a directed acyclic graph, together with sets of local conditional
probabilities.

e Each variable in the joint space is represented by a node in the Bayesian network.

e The network arcs represent the assertion that the variable is conditionally
independent ofits non-descendants in the network given its immediate predecessors
in the network.



e A conditional probability table (CPT) is given for each variable, describing the
probability distribution for that variable given the values of its immediate
predecessors.

The joint probability for any desired assignment of values (yl1, . . ., yn) to the tuple of

n
P(y1....,yn) = [ | POl Parents(¥))
i=l1
network variables(Y1 ... Ym) can be computed by the formula

Where, Parents(Y1) denotes the set of immediate predecessors of Yi in the network.

Example:

Consider the node Campfire. The network nodes and arcs represent the assertion that
Campfire is conditionally independent of its non-descendants Lightning and Thunder,
given its immediate parentsStorm and BusTourGroup.

BusTourGronp
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This means that once we know the value of the variables Storm and BusTourGroup, the
variables Lightning and Thunder provide no additional information about Campfire The
conditional probability table associated with the variable Campfire. The assertion is
P(Campfire = True | Storm = True, BusTourGroup = True) = 0.4

b) Explain the EM Algorithm in detail(5m)



Step 1: Calculate the expected value E[z;;] of each hidden variable z;;, assuming
the current hypothesis 2 = {1, u2) holds.

Step 2: Calculate a new maximum likelihood hypothesis 2’ = (u}, 13), assuming
the value taken on by each hidden variable z;; is its expected value E[z;;}]
calculated in Step 1. Then replace the hypothesis 2 = (u;, u2) by the
new hypothesis 2" = (u], 5) and iterate.

Let us examine how both of these steps can be implemented in practice.
Step 1 must calculate the expected value of each z;. This E[z;] is just the prob-
abilicy that instance x; was generated by the jth Normal distribution
Plx = x|t = py)
T ot Pix =] pe == g5,)

Elz:;] =

e—.)_‘j‘—z-(—l’i — i)

1
ZZ e*ﬁ(x.-—#u)z

n=1

Thus the first step is implemented by substituting the current values (gq, p2) and
the observed x; into the above expression.

In the second step we use the FE[z;;] calculated during Step 1 to derive a
new maximum likelihood hypothesis &" = (L}, p5).
maximum likelihood hypothesis in this case is given by

iy A :':__1 E[Zij] X
. 2 i—1 Elz;]

a) Explain k-nearest neighbour learning algorithm with example(6m).

B most basic instance-based method

$ assumption:
» instances correspond to a point in a n-dimensional space k"

# thus, nearest neighbors are defined in terms of the standard
Euclidean Distance

d(zi,2;) = | Y (ar(2:) — aclz;))?

r=1

where an instance z is described by < a,(z).az(z). ....an(z) >

® target function may be either discrete-valued or real-valued



#  discrete-valued target function:
# f:R"— V whereV is the finite set {vy, vo, ..., v}
# the target function value is the most common value among the
I nearest training examples

k

f{;’f'qj : u.-r'_tlrrrm.:trz f‘if_!'-. f{-'f'z'..]'}

vel

i=1
where é(a.b) = (a == b)
# continuous-valued target function:

# algorithm has to calculate the mean value instead of the most
common value

s fiR" R
: YLl
flag) — == B
- + - . " JIIJ/F-J""_.."‘"H-‘N\‘.
Fraitim = _ i
+ + & -
SO IEES
*- et * - .f; B
+ - +

#® e g instances are points in a two-dimensional space where the
target function is boolean-valued

» l-nearest neighbor: =, is classified positive
# J4-nearest neighbor: x, Is classified negative



B highly effective inductive inference method for many practical problems provided a
sufficiently large set of training examples

B robust to noisy data
#® eighted average smoothes out the impact of isclated noisy training examples
$  inductive bias of £ nearest neighbors

& assumption that the classification of =, will be similar to the classification of
other instances that are nearby in the Euclidean Distance

$  curse of dimensionality
& distance is based on all atiributes
# in contrast fo decision trees and inductive logic programming

# solutions to this problem

& atiributes can be weighied differently
£ eliminate least relevant attributes from instance space

b) Explain case-based reasoning with example(4m)

Can apply instance-based learning even when
X £ Ry

— need different “distance” metric

Case-Based Reasoning is instance-based learning
applied to instances with symbolic logic
descriptions

((user-complaint errorb53-on-shutdown)

(cpu-model PowerPC)

(operating-system Windows)

(network-connection PCIA)

(memory 48meg)

(installed-applications Excel Netscape VirusScan)
(disk 1gig)

(likely-cause 777))

CADET: 75 stored examples of mechanical devices

e each training example: ( qualitative function,
mechanical structure)

e new query: desired function,

e target value: mechanical structure for this
function

Distance metric: match qualitative function
descriptions



A stored case: T—junction pipe

Structure: Function:
Q.T T = temperature
2o () = waterflow Q}' 2 '
v 0,
0, %
—= 0

o
o
(|
~
—
V
LM"“'I

b

A problem specification: Water faucet

Structure: Function:
9 C =0 v
G B
T &
" B
?}1 T

e Instances represented by rich structural
descriptions

¢ Multiple cases retrieved (and combined) to form
solution to new problem

e Tight coupling between case retrieval and
problem solving

Bottom line;

e Simple matching of cases useful for tasks such as
answering help-desk queries

e Area of ongoing research

Consider the following iris dataset. Using the k-Means Clustering approach, classify the below
examples into k clusters by taking k value as 2. Also mention the applications of k-Means clustering
approach. (Can consider 2 initial values for the first step as No.3 and No.6)

No | sepal.length | sepal.width
1 Sl 35

2 4.9 3

3 7 32

4 6.4 32

5 3 3.3

6 5.8 2.0

Since k=2, initial centroid values are as below.
Initial centroid X Y
cl 7 32

c2 5.8 2.7




2)Calculate the euclidean distance of the given equation
Distance(X,Y)(a,b) = Sqrt(X-a)2+(X-b)2

Initial centroid X Y Distance from clusterl Distance from cluster2
1 5.1 3.5 |sqrt(7-5.1)2+(3.2-3.5)2 = 1.92 |sqrt(5.8-5.1)2+(2.7-3.5)2 = 1.02
2 49 3 sqrt(7-4.9)2+(3.2-3)2 =2.10  |sqrt(5.8-4.9)2+(2.7-3)2 = 0.94
3 7 3.2 |sqrt(7-7)2+(3.2-3.2)2=0 sqrt(5.8-7)2+(2.7-3.2)2 =1.30
4 6.4 3.2 |sqrt(7-6.4)2+(3.2-3.2)2=0.6 |sqrt(5.8-6.4)2+(2.7-3.2)2 = 0.94
5 6.3 3.3 |sqrt(7-6.3)2+(3.2-3.3)2 = 0.70 |sqrt(5.8-6.3)2+(2.7-3.3)2 = 0.81
6 5.8 2.7 |sqrt(7-5.8)2+(3.2-2.7)2 = 1.30 |sqrt(5.8-5.8)2+(2.7-2.7)2=0




1st iteration

C1 C2 assigned to
1 1.92 1.02 c2
2 2.1 0.94 c2
3 0 1.3 cl
4 0.6 0.94 cl
5 0.7 0.81 cl
6 1.3 0 c2

Values 3, 4, 5 belongs to cl and 1, 2, 6 belongs to c2. Now we need to calculate the new centroids.

2" jteration
Find the distance w.r.t the updated centroid 6,6, 3.2 and 5.3,3.1

cl= (7+6.4+6.3)/3 = 6.56, (3.2+3.24+3.3)/3 =3.23 = (6.6,3.2)
2=(5.1+4.9+5.8)/3 = 5.26, (3.5+3+2.7)/3 =3.06 = (5.3,3.1)

Initial centroid | X Y Distance from clusterl Distance from cluster2
1 7 3.2 |sqrt(6.6-5.1)2+(3.2-3.5)2=1.52 sqrt(5.3-5.1)2+(3.1-3.5)2 =0.44
2 5.8 2.7  |sqrt(6.6-4.9)2+(3.2-3)2 =1.71 sqrt(5.3-4.9)2+(3.1-3)2 =0.41
3 7 3.2 |sqrt(6.6-7)2+(3.2-3.2)2=0.4 sqrt(5.3-7)2+(3.1-3.2)2=1.70
4 6.4 32 |sqrt(6.6-6.4)2+(3.2-3.2)2=0.2 sqrt(5.3-6.4)2+(3.1-3.2)2 =1.10
5 6.3 3.3 [sqrt(6.6-6.3)2+(3.2-3.3)2 = 0.31 sqrt(5.3-6.3)2+(3.1-3.3)2 = 1.07
6 5.8 2.7 |sqrt(6.6-5.8)2+(3.2-2.7)2 =0.94 sqrt(5.3-5.8)2+(3.1-2.7)2 = 0.78
C1 C2 |assigned to

1 1.52 0.44 c2

2 1.71 0.41 c2

3 0.4 1.7 cl

4 0.2 1.1 cl

5 0.31 1.07 cl

6 0.94 0.78 c2

Values 3, 4, 5 belongs to ¢l and 1, 2, 6 belongs to c2. Since there is no change in the
previous clustervalues, we will stop here and the final clusters are as mentioned below.

C1 C2 |assigned to
1 1.52 | 0.44 c2
2 1.71 0.41 c2
3 0.4 1.7 cl
4 0.2 1.1 cl
5 | 031 1.07 cl
6 | 094 | 0.78 c2

a) Explain locally weighted linear regression. (5Sm)




)

LI

» a note on terminology:
» Regression means approximating a real-valued target function
» Residualis the error f(x) — f(x) in approximating the target
function
» Kernel function is the function of distance that is used to
determine the weight of each training example. In other words,
the kernel function is the function & such that w; = K (d(x;.x;))

& nearest neighbor approaches can be thought of as approximating
the target function at the single query point =

2 |ocally weighted regression is a generalization to this approach,
because it constructs an explicit approximation of f over a local
region surrounding =,

O
7 o
(&) o (@]
\l (]
=
x

target function is approximated using a linear function
f{.r} = Wy + Wy [:;,c't] o P 'wuu,i{:r}

methods like gradient descent can be used to calculate the
coefficients wg, wy. ..., w, to minimize the error in fitting such linear
functions

ANNSs require a global approximation to the target function

here, just a local approximation is needed

the error function has to be redefined

e Consider a query point x = 5.0 and let x*{(1)} and x"*{(2) be two points in the
training set suchthat x*{(1)} =4.9 and x*{(2)} =3.0.
Using the formula w”{(i)} = exp(frac{-(x"{(1)} - x)"2} {2tau”2}) with
tau = 0.5:w™{(1)} = exp(frac{-(4.9 - 5.0)"2} {2(0.5)"2}) = 0.9802

WA{(2)} = exp(frac {(3.0 - 5.0)"2} {2(0.5)"2}) = 0.000335



e So, J(theta) = 0.9802*(theta"Tx"{(1)} - y*{(1)}) + 0.000335*(theta"Tx"{(2)} - y*{(2)})
Thus, the weights fall exponentially as the distance between x and x"{(i)} increases

and so doesthe contribution of error in prediction for x*{(i)} to the cost.

Consequently, while computing theta, we focus more on reducing (theta"Tx"{(i)} -
y*{(1)})"2 for thepoints lying closer to the query point (having larger value of w*{(i)}).

Locally Weighted Linear Regression

" « Dota [ ]
& Prediction ","
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Steps involved in locally weighted linear regression are:

Compute theta to minimize the cost. J(theta) = $sum_{i=1}"{m} w"{(i)}(theta"Tx"{(i)} -
y*{(1)})"2Predict Output: for given query point x,

return: theta®Tx

b) Write a note on Q-learning(5m)

For each s, a initialize the table entry Q(s, a) to zero
Oberserve the current state s

Do forever:

Select an action a and execute it
Receive immediate reward r

Observe new state s’

L I I )

Update each table entry for Q(s, a) as follows
Q(s,a) — r+ j'-;'na..:z:ﬂ:(j(s’._ a’)
» s -— 5

—- using this algorithm the agent's estimate ¢ converges to the actual (2, provided the
system can be modeled as a deterministic Markov decision process, r is bounded, and

actions are chosen so that every state-action pair is visited infinitely often

T artirra 17 R ainfrorcan.
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Initial state: s 7 Next state: s,

Q[:Sl . a?':’ght} == e max Q{SE- G-’}
«— 0+ 0.9 - max{66, 81,100}
+«— 90

# each time the agent moves, @ Learning propagates () estimates
backwards from the new state to the old
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