
USN

Internal Assessment Test 3 – Mar 2024
Sub: Data Structures and Applications Sub Code: BCS304 Branch: CSE

Date: 07 /03/2024 Duration: 90 mins Max Marks: 50 Sem /
Sec: III(A,B & C) OBE

Answer any FIVE FULL Questions MARK
S

CO RB
T

1 (a) For the given tree, Construct a Threaded Binary Tree. Also, point out how the left
threads and right threads are linked in the Threaded Binary Tree.

[06] CO3 L3

(b) Write a C Function to search an element in Binary Search Tree and display
appropriate messages.
searchNode(struct BinaryTreeNode* root, int target)
{

if (root == NULL || root->key == target) {

return root;

[04] CO4 L2

}

if (root->key < target) {

return searchNode(root->right, target);
}

return searchNode(root->left, target);
}

2 (a) Define Binary Search Tree. Construct a Binary Search tree for the following
elements: .100 20 200 10 30 150 300 write the inorder,preorder and postorder
traversal for the same.

norder Traversal: 10 20 30 100 150 200 300
Preorder Traversal: 100 20 10 30 200 150 300
Postorder Traversal: 10 30 20 150 300 200 100

void printInorder(Node* node)
{

if (node == NULL)
return;

// Traverse left subtree
printInorder(node->left);

// Visit node
cout << node->data << " ";

// Traverse right subtree
printInorder(node->right);

}

void printPreOrder(Node* node)
{

if (node == NULL)
return;

[06] CO2 L3

// Visit Node
cout << node->data << " ";

// Traverse left subtree
printPreOrder(node->left);

// Traverse right subtree
printPreOrder(node->right);

}

void printPostOrder(Node* node)
{

if (node == NULL)
return;

// Traverse left subtree
printPostOrder(node->left);

// Traverse right subtree
printPostOrder(node->right);

// Visit node
cout << node->data << " ";

}

(b) Define Graph.Explain the different ways of representing graphs.apply the same for
the below

A Graph in Data Structures is a type of non-primitive and
non-linear data structure. A graph is a basic and adaptable
structure in data structures that is used to show
relationships between pairs of elements

Representations of Graph
Here are the two most common ways to represent a graph : For simplicity,
we are going to consider only unweighted graphs in this post.

1. Adjacency Matrix

2. Adjacency List

[04] CO5 L2

https://www.geeksforgeeks.org/applications-advantages-and-disadvantages-of-unweighted-graph/

Adjacency Matrix
An adjacency matrix is a way of representing a graph as a matrix of
boolean (0’s and 1’s)

Let’s assume there are n vertices in the graph So, create a 2D matrix
adjMat[n][n] having dimension n x n.

● If there is an edge from vertex i to j, mark adjMat[i][j] as 1.

● If there is no edge from vertex i to j, mark adjMat[i][j] as 0.

Representation of Undirected Graph as Adjacency Matrix:

The below figure shows an undirected graph. Initially, the entire Matrix is
 initialized to 0. If there is an edge from source to destination, we insert 1 to
both cases (adjMat[destination] and adjMat[destination]) because we
can go either way.

Undirected Graph to Adjacency Matrix

Representation of Directed Graph as Adjacency Matrix:

The below figure shows a directed graph. Initially, the entire Matrix is
 initialized to 0. If there is an edge from source to destination, we insert 1
for that particular adjMat[destination].

https://www.geeksforgeeks.org/adjacency-matrix-meaning-and-definition-in-dsa/

Directed Graph to Adjacency Matrix

Adjacency List
An array of Lists is used to store edges between two vertices. The size of
array is equal to the number of vertices (i.e, n). Each index in this array
represents a specific vertex in the graph. The entry at the index i of the
array contains a linked list containing the vertices that are adjacent to
vertex i.

Let’s assume there are n vertices in the graph So, create an array of list of
size n as adjList[n].

● adjList[0] will have all the nodes which are connected

(neighbour) to vertex 0.

● adjList[1] will have all the nodes which are connected

(neighbour) to vertex 1 and so on.

Representation of Undirected Graph as Adjacency list:

The below undirected graph has 3 vertices. So, an array of list will be
created of size 3, where each indices represent the vertices. Now, vertex 0
has two neighbours (i.e, 1 and 2). So, insert vertex 1 and 2 at indices 0 of
array. Similarly, For vertex 1, it has two neighbour (i.e, 2 and 0) So, insert
vertices 2 and 0 at indices 1 of array. Similarly, for vertex 2, insert its
neighbours in array of list.

https://www.geeksforgeeks.org/adjacency-list-meaning-definition-in-dsa/

Undirected Graph to Adjacency list

Representation of Directed Graph as Adjacency list:

The below directed graph has 3 vertices. So, an array of list will be created
of size 3, where each indices represent the vertices. Now, vertex 0 has no
neighbours. For vertex 1, it has two neighbour (i.e, 0 and 2) So, insert
vertices 0 and 2 at indices 1 of array. Similarly, for vertex 2, insert its
neighbours in array of list.

3 (a) Define Forest.Explain the steps to convert Forest to Binary tree.Apply the same to
the below forest.

[06] CO4 L2

(b) Define collision.What are the methods to resolve collision.Explain.

n computing, particularly in the context of data structures like hash tables, a collision
occurs when two different keys hash to the same index in the hash table. Since hash
tables rely on a hash function to map keys to indices, collisions are inevitable when
multiple keys map to the same index.

Methods to Resolve Collisions

There are several methods to handle collisions in hash tables, each with its own
advantages and trade-offs. Here are the primary methods:

1. Chaining (Separate Chaining):
○ Concept: In chaining, each index in the hash table points to a linked

list (or another dynamic data structure like a binary tree). When a
collision occurs, the new entry is simply added to the list at the index
where the collision happened.

○ Pros: Easy to implement; handles dynamic load well as the list can
grow as needed.

○ Cons: Performance can degrade if many collisions occur and lists
become long. Extra memory is used for pointers and lists.

2. Open Addressing:
○ Concept: In open addressing, all elements are stored directly in the

[04] CO5 L2

hash table itself. When a collision occurs, the hash table looks for
another open slot using a probing sequence. Common probing
methods include:

■ Linear Probing: If a collision occurs, the algorithm checks
the next slot (i.e., index + 1) and continues checking
sequentially until an empty slot is found.

■ Quadratic Probing: Instead of moving linearly, the algorithm
checks slots according to a quadratic function (e.g., index +
i^2, where i is the number of attempts).

■ Double Hashing: Uses a second hash function to determine
the step size for probing, which reduces clustering compared
to linear and quadratic probing.

○ Pros: More cache-friendly than chaining; does not require additional
memory for pointers.

○ Cons: Performance can degrade with high load factors (i.e., when the
table is nearly full). Requires careful handling of probing sequences to
avoid clustering.

3. Double Hashing:
○ Concept: This is a specific form of open addressing where two hash

functions are used. The first hash function determines the initial
position, and the second hash function determines the step size for
probing.

○ Pros: Reduces clustering issues compared to linear and quadratic
probing.

○ Cons: More complex due to the need for two hash functions. It can
still suffer from performance degradation if the table becomes too
full.

4(a) Construct the Hash table for the following key elements using Linear Probing and
Chaining.
Key elements: 72,27,36,24,63,81,92 and 101.
Hash table size:10
Write the each step mapping of the key element to the hash table. [06] CO5 L3

(b) Write a short note on Optimal Binary Search Tree.

An Optimal Binary Search Tree (BST) is a type of binary search tree that is

[04] CO4 L1

constructed to minimize the total search cost, which is the sum of the frequencies of
access times for all nodes in the tree. This optimization is crucial in scenarios where
certain keys (or values) are accessed more frequently than others.

Key Concepts

1. Objective:
○ The primary goal of an optimal BST is to minimize the weighted path

length, which represents the expected cost of search operations. The
weighted path length is computed as the sum of the products of the
frequency of each key and its depth in the tree.

2. Dynamic Programming Approach:
○ The construction of an optimal BST is typically solved using dynamic

programming. The approach involves calculating the cost of each
possible subtree and then combining these costs to determine the
overall optimal structure.

3. Key Definitions:
○ Frequency of Access: Represents how often each key is accessed.

The higher the frequency, the more critical it is to place such keys
closer to the root to reduce the search cost.

○ Cost of a Tree: The total cost is calculated as the sum of the product
of each node's frequency and its depth in the tree.

5(a) Define Leftist Tree.Explain its two kinds with an example

A Leftist Tree is a type of binary tree used to efficiently support priority queue
operations such as insertion, deletion, and merging. It is specifically designed to
ensure that the merge operation is efficient, making it suitable for implementing
priority queues.

Definition and Properties

A Leftist Tree is a binary tree with the following properties:

1. Heap Property: For any node xxx, the value at xxx is less than or equal to
the values of its children. This property ensures that the smallest element is
always at the root.

2. Leftist Property: The left subtree of any node xxx has a shorter or equal
shortest path to a null pointer (i.e., the number of null pointers on the shortest
path from the node to a leaf) compared to the right subtree. This ensures that
the tree remains balanced enough to support efficient operations.

[06] CO4 L2

(b) Construct the Leftist tree for the following data.
50,75,25,55,40,65 [04] CO4 L3

6(a) Consider the Keys(a1,a2,a3)=(5,10,15) with equal probabilities
Pi=Qi=1/7.Calculate the cost of the trees.Mention which is the Optimal Binary
Search Tree.

[06] CO4 L3

(b) Construct a min heap for the following data.
14,12,1,10,8,6,50

[04] CO4 L3

CI CCI HOD

