
Internal Assessment Test 3 – March 2024

SCHEME AND SOLUTION

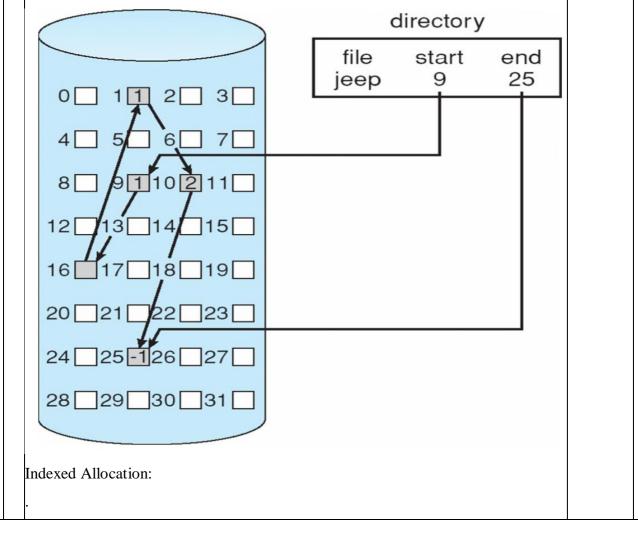
Sub:	Operating	s Systems				Sub Code:	BCS303	Bran	ch:	CSE		
Date:	06/03/24	Duration:	90 minutes	Max Marks:	50	Sem / Sec:		' A, B,	C		0	BE
	·	Ans	wer any FIV	VE FULL Qu	estio	ns			MAR	KS	со	RBT
	Physical physical fixed-size Mbytes, I of all free	address spa memory wh ed blocks ca Divide logica e frames, To	ce of a proc enever the la lled frames, al memory ir o run a progr	LB.(Diagram cess can be no atter is availab Size is power nto blocks of s am of size N table to trans	ncor ble, l c of 2 ame page	ntiguous; pro Divide physic 2, between 5 size called pa s, need to fin	cess is alloc cal memory 12 bytes an ages, Keep ad N free fra	into id 16 track ames				
	Backing s Address g Page	ing store likewise split int ess generated by CPU is d Page number (p) – used as address of each page in ph		ages, Still hav ded into: 1 index into a p	e Int	ernal fragme	ntation					
	-		combined w nt to the men	rith base addre mory unit		-	hysical men	nory				
		page nu	umber		paę offs	-						
			p	0	d							
1 a		n	n - n	I	n				[5]]	3	L3
	For s	given logical address	e size	physical address								
	Page table	e is kept in n	nain memory	/								
	Page-tabl	e base regist	er (PTBR) p	oints to the pa	ge ta	ıble						

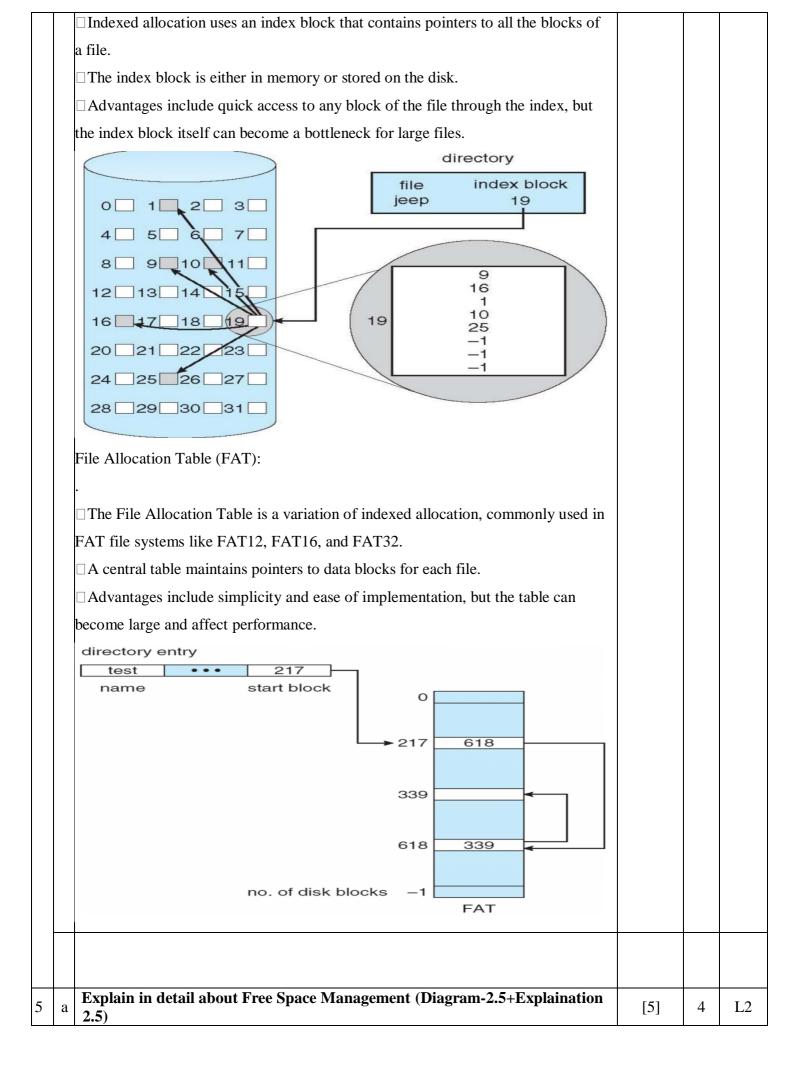
52 EB 4 Reference string 1,7,6,1,21,7 -1-2 -1 5 Page miss page i) LRU: 2 82 13 6 6 6 GX 7 7 4 jault = 8 , page nit page iii) optimal 14 -4 -4 41 J_ 7 12 £3. page fault G page hit = optimal page suplacement the most is replacement page 100 algorithm epicient Thrashing? Briefly describe the methods in which it What is can be controlled.(Diagram-2.5+Explaination 2.5) Thrashing is a phenomenon in computer systems where excessive paging occurs, leading to a decrease in overall system performance. Paging is a memory management scheme where portions of a program or data are swapped in and out of the main memory (RAM) and secondary storage [5] 3 3 L1 а (usually a hard disk) to accommodate the limited physical memory available. When a system experiences thrashing, it means that the majority of the time is spent swapping pages in and out of the disk, rather than executing useful tasks. This results in a significant degradation of performance and responsiveness. Several methods can be employed to control thrashing Working Set Model:

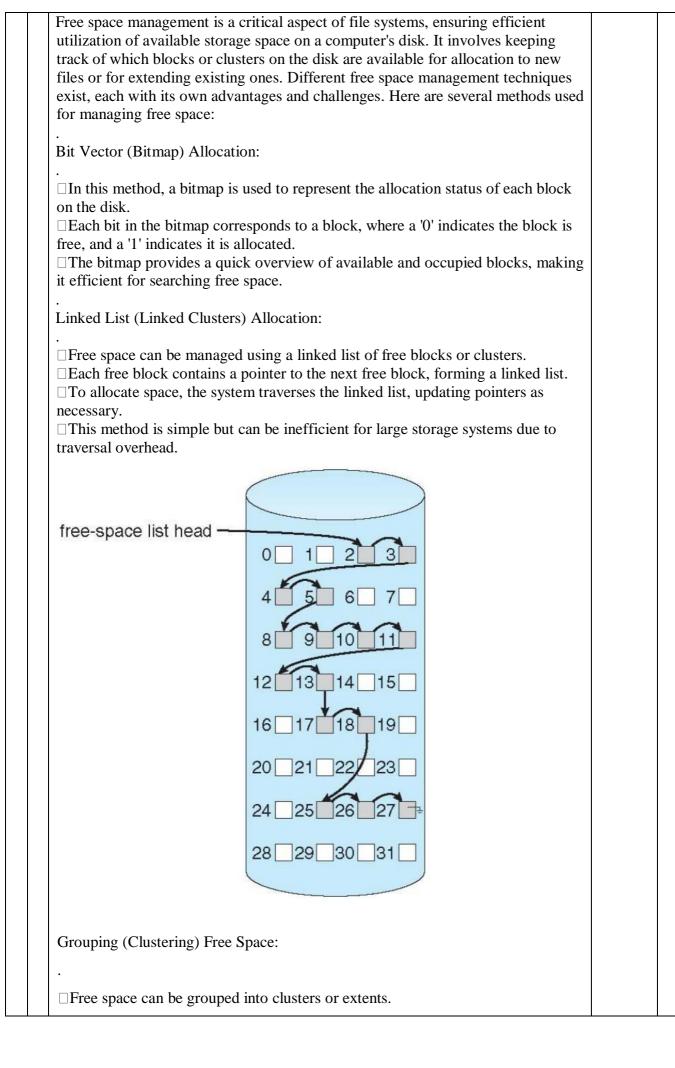
		Two-Level Directory:			
		 This structure introduces the concept of dividing the file system into two levels - a user directory and a system directory. Each user has their own directory, and the system has a directory for each user. The user directory names are unique within the system directory. 			
		Tree-Structured Directory:			
		□In a tree-structured directory, directories are organized hierarchically, forming a tree-like structure. □Each node in the tree represents a directory, and the leaves represent files. This structure allows for more efficient organization and retrieval of files.			
		Acyclic-Graph Directory:			
		 An acyclic-graph directory structure is similar to a tree structure but allows for shared subdirectories. This structure eliminates the restriction that each directory can only appear in one location, enabling more flexible organization. 			
		General Graph Directory:			
		Unlike acyclic-graph structures, general graph directory structures allow for cycles, which means directories can have multiple links and connections. While this flexibility can be powerful, it can also lead to complexity and potential issues if not managed carefully.			
		Distributed Directory:			
		 Distributed directory structures are designed for distributed file systems where files are stored on multiple servers or locations. This structure facilitates access to files across a network, providing a unified view of the directory structure for users. 			
		Briefly discuss about the different types of Allocation Methods in File System implementation(Diagram-5+Explaination 5) File system allocation methods determine how disk space is allocated to files.			
		There are several allocation methods, each with its own advantages and			
		disadvantages. Here are the main types of file allocation methods:			
4	a	Contiguous Allocation:	[10]	4	L2
		. In contiguous allocation, each file occupies a contiguous block of disk space. Advantages include simple and fast access since the entire file is stored in a single block. 			

Disadvantages include fragmentation issues, as over time, the disk becomes fragmented with small gaps between files.

count
0 1 2 3
4 5 6 7
8 9 10 11 tr
12 13 14 15
16 17 18 19 mail
24 25 26 27 list
28 29 30 31

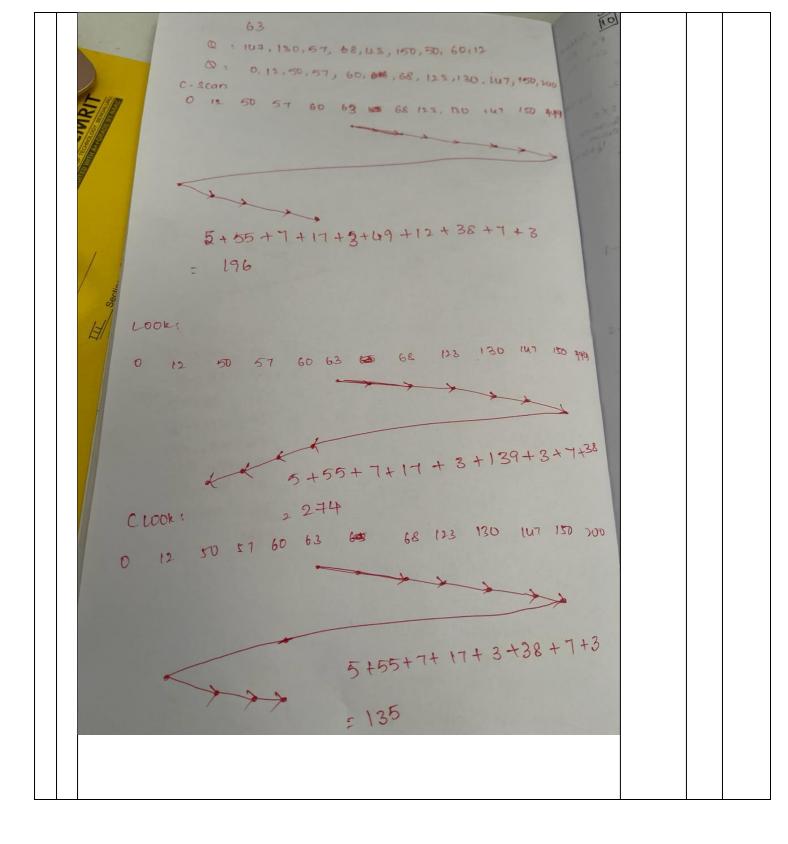

directory										
file	start	length								
count	0	2								
tr	14	з								
mail	19	6								
list	28	4								
f	6	2								


Linked Allocation:


□Linked allocation uses a linked list data structure to connect blocks of a file scattered throughout the disk.

 \Box Each block contains a pointer to the next block in the sequence.

□ Advantages include efficient space utilization, but accessing a specific portion of the file can be slower due to scattered blocks and traversal of the linked list.



	□Clusters are contiguous blocks of free space, and the file system allocates entire			
	clusters rather than individual blocks.			
	□This helps reduce fragmentation and improves performance but can lead to			
	internal fragmentation if the cluster size is larger than the file size.			
	Counting (Counting Blocks) Method:			
	. □ In this method, a counter keeps track of the number of free blocks on the disk.			
	□ When a block is allocated or deallocated, the counter is updated accordingly.			
	□ While simple, this method may suffer from inefficiency and contention in a multi-			
	user environment.			
	Explain the access matrix method of system protection in OS.(Diagram- 2.5+Explaination 2.5)			
	2.5+Explaination 2.5)			
	The access matrix is a model used for implementing system protection and access			
	control in operating systems. It provides a structured representation of the access			
	rights between subjects (e.g., users, processes) and objects (e.g., files, resources) in a computer system. The access matrix method is a powerful and flexible			
	approach that enables administrators to define and control access permissions			
	effectively.			
	Here are the key components of the access matrix:			
	Subjects:			
	Subjects represent entities that can perform operations or actions on objects. Examples of subjects include users, processes, or even devices.			
	Objects:			
b	 Objects are resources or entities on which subjects perform operations. Examples of objects include files, directories, devices, and system resources. 	[5]	4	L2
	Access Rights:			
	Access rights define the permissions or operations that subjects can perform on			
	objects.			
	Common access rights include read, write, execute, delete, and control.			
	Access Matrix:			
	The access matrix is a table that visually represents the relationships between			
	subjects and objects based on access rights.			
	□ Rows in the matrix correspond to subjects, columns correspond to objects, and the cells contain the access rights associated with the respective subject-object			
	pair. The access matrix method provides several benefits:			
	Flexibility: The matrix allows fine-grained control over access permissions,			
	supporting a wide range of security policies.			
	Scalability: It can accommodate a growing number of subjects and objects without significant restructuring.			

			xpressiveness: T a concise and st		access patterns					
				ACCESS	MATRIX					
			Object Domain	F۱	F2	Laser Printer				
		Dı		read	read					
			D2			print				
			D3		exceute					
			D4	read/write	read/write					
6	а	(Dia	A disk has 20 of pending reque Starting at the current head cylinders) using FCFS, S agrams-5+ Expla	[10]	4	L3				

ĔÊĜĴ soo cytenders head pos=63 To don't_ 6 Shars 147,130,57,68,123,150,50,60,12 Skip 12 50 57 60 63 68 123 130 147 150 200 FIFD - dede 1 -----12 t distance = 64+17+73+11+55+27+100+10+48 SSTE = 425 0 12 50 57 60 63 68 123 130 147 150 20 distance = 3+3+7+18+55+7+17+3+138 = 251 SCAN 12 50 57 60 63 68 123 130 147 150 0 avo • > • > ---------6 1 distan = 5+55+7+17+3+50+140+3+7+38 - 325 *

CI	CCI	HoD
	All the Best	

	CO-PO Mapping																	
	Course Outcomes	Modules covered	P 0 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P 0 1 0	P 0 1	P 0 1 2	P S O 1	P S O 2	P S O 3	P S O 4
CO1	Describe the Operating System Structure and Services.	1	3	-	-	-	-	-	-	-	-	-	-	3	-	2	-	-
CO2	SummarizetheProcessManagementconceptslikeProcesses,Threads,CPUScheduling,ProcessSynchronization and Deadlocks	1, 2	3	2	2	-	-	-	-	-	-	-	-	3	-	2	-	_
CO3	Interpret the Memory Management concepts with respect to Main Memory and Virtual Memory.	3, 4	3	2	2	-	-	-	-	-	-	-	-	3	-	2	-	-
CO4	Discuss the Storage Management concepts like File-System Interface, File-System Implementation and Mass- Storage Structure	4, 5	3	2	2	-	-	-	-	-	-	-	-	3	-	2	-	_
CO5	Elucidate the Protection features in Operating System and case study in Linux OS.	5	3	2	2	-	-	-	-	-	-	-	-	3	-	2	-	-