USN					

Internal Assessment Test 3 – March 2024

Sub:	Artificial Inte	elligence and Ma	chine Learnin	ıg		Sub Code:	21CS54	Branch:	CSE		
Date:	14/03/2024	Duration:	90 mins	Max Marks:	50	Sem/Sec:	V / A, B&C		'	OBE	
			Answer any	FIVE FULL Qu	<u>iestions</u>				MAR KS	СО	RBT
1	Write the C4.5 in the algorithm	C	s a C4.5 algorit	thm better than II	O3? Wha	at are the attribu	ite selection mea	sures used	(5+3+2)	CO2	L2
2		set containing in T algorithm to be		t patients to pred tree model	ict whetl	ner a person has	"Heart Disease	or not.	10	CO3	L3
	Chest Pain Good Blood Blocked Heart Circulation Arteries Disease										
	No	No	No	No							
	Yes	Yes	Yes	Yes							
	Yes	Yes	No	No							
	Yes	No	No	Yes							
	No	No	Yes	Yes							
	No	Yes	No	No							
	Yes	No	Yes	Yes							
3	State Bayes the	orem. Write an a	algorithm of the	e Naïve Nayes c	lassifier.	List out and w	rite the working	g principle o	of (2+5+ 3)	CO2	L2
	variants of Naïv	e Bayes classifie	ers.								

USN						

Internal Assessment Test 3 – March 2024

	Artificial Intelligence and Machine Learning Sub Code: 21CS54 Branch:							Branch:	CSE		
Date:	14/03/2024	Duration:	90 mins	Max Marks:	50	Sem/Sec:	V / A, B&C	'		OBE	
			Answer any I	FIVE FULL Q	iestion	<u>s</u>			MA RKS	СО	RBT
		algorithm. How in the algorithm	_	orithm better th	an ID3	? What are the	attribute selec	tion	(5+3+2)	CO2	L2
		ne CART algori Good Blood	thm to build a	oout patients to a decision tree r		whether a per-	son has "Heart	Disease"	10	CO3	L3
<u> </u>		Circulation	Arteries	Disease							
	No	No	No	No							
	Yes	Yes	Yes	Yes							
-	Yes	Yes	No	No							
_	Yes	No	No	Yes							
_	No	No	Yes	Yes							
-	No	Yes	No	No							
L	Yes	No	Yes	Yes							

4	(a) Draw an	d explain the structu	re of an Artificial I	Neural Network.		5	CO2	L2
	(b) Write an		5					
5	samples each vec Training sampl I1: (1,1,1,0) Output units: U Initial weight r Unit 1: 0.3 Unit 2: 0.6 Identify an algo	les: I2: (0,0,1,1) I3: Unit1 and Unit2, learn natrix:	(1,0,0,1) I4: (0 ning rate 0.6. 2 6 ut supervision. Sho	0,0,1,0)		10	CO4	L3
6	Consider the folloof objects 2 and 4	swing dataset. Cluster as initial seeds. S.No 1 2 3	X 3 7 12 16	Y 5 8 5 9	vith the initial value	10	CO5	L3

CI CCI HoD

4	(a) Draw and ex	plain the structure of	of an Artificial Neu	ral Network.		5	CO2	L2
	(b) Write an alg	orithm of the percep	tron Learning.			5		
		1 1	C					
5	Consider the network	c architecture with 4	input and 2 output	units. Consider fo	our training samples	10	CO4	L3
	each vector of length	4.			• .			
	Training samples:							
		: (0,0,1,1) I3: (1,	0,0,1) I4: (0,0,	1,0)				
		and Unit2, learning		,				
	Initial weight matr	ix:						
	Unit 1: 0.3 0.8							
	Unit 2: 0.6 0.7	0.4 0.6						
	Identify an algorith	m to learn without s	upervision. Show t	he weight updates	of the SOFM during			
	the first epoch of the	learning algorithm.	-					
6	Consider the following	ng dataset. Cluster it	using the K-Means	s algorithm with th	ne initial value of	10	CO5	L3
	objects 2 and 4 as ini-	tial seeds.	J					
	,				_			
		S.No	X	Y				
		1	3	5				
		2	7	8				
		3	12	5				
		4	16	9	1			

IAT 3

21CS54 AIML

Scheme of valuation

(1.) Write the C4.5 algorithm. How is a C4.5 algorithm better than ID3? What are the attribute selection measures used in the algorithm?

C4.5 algorithm: (5)

2. Compute Entropy, Information gain, Split information and Gain Ratio for each of the attribute in the training dataset.

Entropy_Info(
$$T$$
, A) = $\sum_{i=1}^{v} \frac{|A_i|}{|T|} \times \text{Entropy_Info}(A_i)$
Information_Gain(A) = Entropy_Info(T) - Entropy_Info(T , A)
Split_Info(T , A) = $-\sum_{i=1}^{v} \frac{|A_i|}{|T|} \times \log_2 \frac{|A_i|}{|T|}$
Gain_Ratio(A) = $\frac{\text{Info_Gain}(A)}{\text{Split_Info}(T, A)}$

- 3. Choose the attribute for which the maximum Gain ratio is the best-split attribute.
- 4. The best-split attribute is placed as the root node.
- 5. The root node is branched into subtrees with each subtree as an outcome of the test condition of the root node attribute. Accordingly, the training dataset is also split into subsets.
- 6. Recursively apply the same operation for the subset of the training set with the remaining attributes until a leaf node is derived or no more training instances are available in the subset.

(3)

Features	ID3	C4.5	
Type of data	Categorical	Continuous and Categorical	
Speed	Low	Faster than ID3	
Boosting	Not supported	Not supported	
Pruning	No	Pre-pruning	
Missing Values	Can't deal with	Can't deal with	
Formula	Use information entropy and information Gain	Use split info and gain ratio	

Metrics: (2)

(3) State Bayes theorem. Write an algorithm of the Naïve Nayes classifier. List out and write the working principle of variants of Naïve Bayes classifiers.

Bayes theorem: (2)

It can be written as:
$$P \text{ (Hypothesis } h \mid \text{Evidence } E) = \frac{P(\text{Evidence } E \mid \text{Hypothesis } h) P(\text{Hypothesis } h)}{P(\text{Evidence } E)}$$

Algorithm: Naïve Bayes Classifier:

(5)

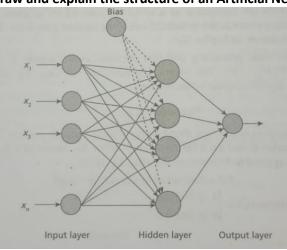
- 1. Compute the prior probability for the target class.
- 2. Compute the Frequency matrix and likelihood probability for each of the attributes.
- 3. Use Bayes theorem to calculate the probability of all hypotheses.

It can be written as:
$$P \text{ (Hypothesis } h \mid \text{Evidence } E) = \frac{P(\text{Evidence } E \mid \text{Hypothesis } h)}{P(\text{Evidence } E)}$$

4. Use Maximum A Posteriori (MAP) hypothesis h_{MAP} to classify the test object to the hypothesis with the highest probability.

$$h_{MAP} = \max_{heH} P(Hypothesish | Evidence E)$$

$$= \max_{heH} \frac{P(Evidence E | Hypothesis h)P(Hypothesis h)}{P(Evidence E)}$$


$$= \max_{heH} P(Evidence E | Hypothesis h)P(Hypothesis h)$$

Variants of Naïve Bayes classifiers:

(3)

- 1) Bernoulli Naïve Bayes classifier
 - Discrete features
 - Boolean variables
- 2) Multinomial Naïve Bayes classifier
 - Generalization of Bernoulli Naïve Bayes classifier
- 3) Multi-class Naïve Bayes classifier
 - Multiclassification

(4) (a) Draw and explain the structure of an Artificial Neural Network.

(b) Write an algorithm of perceptron Learning.

(5)

(5)

Algorithm 10.1: Perceptron Algorithm

Set initial weights $w_1, w_2, ..., w_n$ and bias θ to a random value in the range [-0.5, 0.5].

- 1. Compute the weighted sum by multiplying the inputs with the weights and add the
- 2. Apply the activation function on the weighted sum:

$$Y = \text{Step} ((x_1 w_1 + x_2 w_2) - \theta)$$

- 3. If the sum is above the threshold value, output the value as positive else output the
- 4. Calculate the error by subtracting the estimated output $Y_{\text{estimated}}$ from the desired output

error
$$e(t) = Y_{desired} - Y_{estimated}$$

[If error e(t) is positive, increase the perceptron output Y and if it is negative, decrease the perceptron output Y.]

5. Update the weights if there is an error:

$$\Delta w_i = \infty \times e(t) \times x_i$$
$$w_i = w_i + \Delta w_i$$

where, x_i is the input value, e(t) is the error at step t, ∞ is the learning rate and Δw_i is the difference in weight that has to be added to w_i

Q:2	Dataset:	Good Blood Circulation	Blocked Arteries	Hersa Disease
	Chest pain O No	No	No Yes	No Yes
	1 Yes	Yes	No	No
	3 Yes		No	Yes
	1 Yes	No	Yes	Yes
	3 No	No	NO	No
	6 NO	Yes	Yes	Yes
	1 Yes	No		ar all
	Solution"			
	Solution! Gini-Inda	1.	stile da	taset
	Cieni-Inde	en for the	14 2	(3 2
	Gilni_Ind	lex $(\tau) = 1$	- (=) -	
	Jaronula?	Firmi-Indos	(T)=1-	m Pi?
		1-0.327		a crestand
			0.104	tiles:
		-0.489		1.114
	First attri.	bule; ch	est pain	- 1 - ati 4
	possible	values: N	o, les,	so subsats:4
	NO. Of	es - '		
	No. of	V0 - 3		
	Chest Pai	in Heart Dise	ase = les	Heart No Disease = No
	Yes	2		1
	No	3		
	& subsets:			~
	2403, E	Nog Has	, No 3	

```
Gilmi-Inden (T, Chest palm Elyes)
         =1-\left(\frac{3}{4}\right)^2-\left(\frac{1}{4}\right)^2
         =1-0.563-0.063
         = 0.374
   Gilmi-Index (T, chest pain 2 No3)
        =1-\left(\frac{1}{3}\right)^2-\left(\frac{2}{3}\right)^2
         =1-0.11-0.44
         =0.45
  Gibni-Indea (T, chest pain & Mes, No.])
     = 15,1 Gini (s,)+ 1521 Gini (s2)
     =\frac{4}{7}\times0.374+\frac{3}{7}\times0.45
      = 0-214 + 0-19
      =0-404
    A Grani (Chest pain) = Gini(T) - Grini (Chest
                              =0.489-0.404
                              =0.085
 Second attribute
                     Good Blood Circulation
 Yes: 3, NO: 4
   Good Blood
                  Heart Disease = No
    Cosculation
       Yes
        NO
 2 subsets
            3 Yes 3, 3 No 3
 Gini Indea (T, GBC E ? 283)
        = 1 - \left(\frac{1}{3}\right)^2 - \left(\frac{2}{3}\right)^2
        =1-0.11-0.44=0.45
Gini- Index (T, GB = E & No3)
        =1-(\frac{3}{4})^2-(\frac{1}{4})^2=1-0.563-0.063
```

```
Qini-Index (Good B. C & TYes, Nog)
        = 3 x 0.45 + 4 x 0.374
        = 0.193 0.404
 AGini (GBC) = Gini(T) - Gini (GBC)
                 = 0.085
 Third attribute's Blocked Asterns
        Yes: 3, No: 4
                               therst Disease = No
   Bloud Herost = Yes
Adenses Disease = Yes
       Yes
                                       3
 Subsets.
        Eyes 3, SNO3
 Gimi-Index (BA & E Yes 3)
     =1-\left(\frac{3}{3}\right)^2
Gini_ Index (BA E {NO})
     =1-\left(\frac{1}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}
       = 40 0.374
Gini-Inder (BA & E & Yes, No)
      =\frac{3}{7}x0+\frac{4}{7}x0.374
     20.214
Daini (BA) = aini(T) - Gini(BA)
                =0.489 -0.214
                 =0.275
```

Gimi-index & DGimi for all the attributes Attribute Gior-indea 1 Gini chest pain 0-404 0.085 GBC 0.404 0.085 BA 0.214 0.275 Blocked Asteries has the highest & Giri value. So Blocked Asterois is the root node. NO HD GBC clust pam Cliest pam GBC M.D NO NO NO Us NO Yes Yes Yes Yes NO Yes NO Yes Yes NO Iteration 2: Deft subtree some doss GBC NO Girl Index (T) HD GBC ND 20 NO NO Yes Yes Tes No Yes NO Yes NO

Iteration 2:
CP GBC HD
NO NO NO
Yes Yes No
Yes NO YES NO
No 185
GBni- Endon (T) = 1-(-1) - (3)
Girni- Indon (T) = 1-(4) (4) 20-374
Chest pain
Forst attribute: Chest pain' les: 1, No: 3 HD = No
Chestpain Heart disease = Yes HD = No
Yes
No 2
AND SANDERS AND SA
Subsets: 3, {No }
2 (MS), 1 J Syes 3)
Gimi-Pondex (CP & Eques)
$=1-\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2$
= 1 - 0.25 - 0.25
Fini-Inden (CP & 2N03)
7/mi-Inden (C) 2 12 2
$=1-\left(\frac{0}{2}\right)^2-\left(\frac{2}{2}\right)^2$
Fini-Index (chest pain) = 2 x0.5
20.25
D Gilmi = Gimi(T) - Gimi(chest pain)
= 0.374 -0.25
=0.124

```
2nd attribute: Good Blood Circulation
       Yes: 2, No: 2
   GBC HD=Yes HD=NO
   Yes
    NO
Gilmi-index
 Subset:
     37es], & No]
Gimi-Index (GBC Eqyes])
     = 0 ou
Gini-Index (GBCEE No 3)
      =1-(\frac{1}{2})^2-(\frac{1}{2})^2
       =0.5
  Gini _ index (Good Blood Grandotron) AGini (GBC)
 A GiPm = GimiCT) -
                                    =GimiCT)-
                                     Giri (GBC
        =\frac{2}{4}x0+\frac{3}{4}x0.5
                                    = 0.374-
                                    =0.124
        =0.25
Gini-indea & A Griori values
                                16,mi
     Att Noute Gini-index
                                0.124
    chest pain 0.25
                                0-124
  Good Blood Corculation
CP & GBC hors some AGiri value,
 we com sdeet any one as not node
  I will select chest pain as not node.
```

The classification decision tore NO chest NO Yes HD=No HD GBC NO Yes Yes NO Anal tra: Blocked Artens NO Chest Pair NO Disease Hes Disease M No Heart Disease=10 Herst Disease = NO

```
15/3/2024
          Network Architecture
Friday
 Q:5 4 Emperte mite (unit 1 eunit 2)
     Ilp: 4 toassing 5 simples (each vector of)
       II: (1,1,1,0)
       I2:(0,0,1,1)
      I3: (1,0,0,1)
      14: (0,0,1,0)
     Learning rate = 0.6
     Initial weight matrix:
     unit1: [0.3 0.8 0.7
     unit2: 0.6 0.7 0.4 0.6
     Solution:
     Training somple I! (1,1,1,0)
weight mouther
       unit2: [0.3 0.8 0.7 0.2]
unit2: [0.6 0.7 0.4 0.6]
     Compute Endideron distorne between
     II and world I weights
     d^2 = (0.3-1)^2 + (0.8-1)^2 + (0.7-1)^2 + (0.2-0)^2
         = 0.49 + 0.04 + 0.09 +0.04
    Compute Euclideon distorne between
     II and writ a weights
     d^{2} = (0.6 - 1)^{2} + (0.7 - 1)^{2} + (0.4 - 1)^{2} + (0.6 - 0)^{2}
         = 0.16 + 0.09 + 0.36 + 0.36
         =0.97
```

```
- Distance between I, and Unit 1 is shotter,
 30 Unit 1 wing.
 Update the weights of Unit 2
 Formula:
  w (t+) = w(t) + n (Iorput - w(t))
 mit 2's weight vector
    = [0.3 0.8 0.7 0.2]+0.6[[1110]-
       [0.3 0.8 0.7 0.2])
 = [0.3 0.8 0.7 0.2] + 0.6 (0.7 0.2 0.3 -0.3)
 = [0.3 0.8 0.7 0.2] + [0.42 0.12 0.18 -0.12]
    = [0.72 0.92 0.88 0.08]
mit1: [0.72 0.92 0.88 0.08
unite: 0.6 0.7 0.4 0.6
Iteration 2: I2: (0,0,1,1)
 Eulidem distronce between I2 & Vout 1
d^{2} = (0.72 - 0)^{2} + (0.92 - 0)^{2} + (0.88 - 1)^{2} + (0.08 - 1)^{2}
= 0.52 + 0.85 + 0.014 + 0.85
Eudideon distance between I2 & Vouit 2
d^{2} = (0.6-0)^{2} + (0.7-0)^{2} + (0.4-1)^{2} + (0.6-1)^{2}
    =0-36 +0.49 +0.36+0.16
   =1.37
Unit 2 wios
        unit 2 = [0.6 0.7 0.4 0.6] + 0.6
update weights of
              ([0 0 1 1] - [0.6 0.7 0.4 0.6])
= (0.6 6.7 0.4 0.6] + 0.6 (-0.6 -0.7 0.6 0.4)
= \begin{bmatrix} 0.6 & 0.7 & 0.4 & 0.6 \end{bmatrix} + \begin{bmatrix} -0.36 & -0.42 & 0.36 & 0.24 \end{bmatrix}
= \begin{bmatrix} 0.24 & 0.28 & 0.04 & 0.36 \end{bmatrix}
```

```
Iteration 3:
               I3: (1,0,0,1)
              Eulidearn distarre between Iz surif,
              d2 = (0.72-1)2+(0.92-0)2+(0.88-0)2+(0.08-)
                             = 0.08 + 0.85 + 0.77 + 0.85
           Euclidean dutarne between I32 Unit 2
               d2 = (0.24-1) + (0.28-0) + (0.04-0) +
                             = (0.24 - 1) + (0.28 + 0.84 - 1)^{2}
= (0.24 - 1) + (0.28 + 0.08 + 0.002 + 0.41 + 0.002 + 0.41 + 0.002 + 0.41 + 0.002 + 0.41 + 0.41 + 0.002 + 0.41 + 0.41 + 0.002 + 0.41 + 0.41 + 0.002 + 0.41 + 0.41 + 0.002 + 0.41 + 0.41 + 0.002 + 0.41 + 0.41 + 0.002 + 0.41 + 0.41 + 0.002 + 0.41 + 0.41 + 0.002 + 0.41 + 0.41 + 0.002 + 0.002 + 0.41 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002 + 0.002
                         =1.072 1.27
       Unit 2 wins
     applate weights = [0.24 0.28 0.04 0.36] +
                                                                      0.6 [[1,0,0,1]-
    = [0.24 0.28 0.04 0.36] + 0.6 (0.76 -0.28 -0.04)
   = [0.24 0.28 0.04 0.36] + [0.46 -0.17 -0.024
   = 0.7 0.11 0.02 0.747
  unit 1: 0.72 0.92 0.88 0.08 unit 2: 0.7 0.11 002 094
Iteration 4: 14: (0,0,1,0)
Earlideron distroone blw I4 and Unit 1
 d^{2} = (0.72 - 0)^{2} + (0.92 - 0)^{2} + (0.88 - 0)^{2} +
                 =0.52+0.85 +0.014 +0.006
                 =1.39
```

```
Endiden distance between In a Vouit 2
              d^{2} = (0.7 - 0)^{2} + (0.11 - 0)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2} + (0.02 - 1)^{2}
                  =0.49 to.012 to.96 to.550.88
                           = 2.012 1.872
             Full dem die Forme between In & Von
              Unit 1 wins
            update weights] = [0.72 0.92 0.88 0.08]+0.6
                     [[0 0 10] - [0.72 0.92 0.88 0.08])
           = [0.72 0.92 0.88 0.08] +0.6
                                                                         1-0.72 -0.92 0.12 -0.08]
           2[0.72 0-92 0.88 0.08] + [-0.43 -0.55
0.07 -0.05
         z[0-29 +-47 0.95 0.03]
Junit 2 - [0.29 147 0.95 0.03 0.74]
           Best mapping units for each of the imputs taken one
           II: (1,1,1,0) -> Unit 1
       T_2: (0,0,1,1) \rightarrow Unit_2
T_3: (1,0,0,1) \rightarrow Unit_2
                                    (0,0,1,0) -> Unit 1
          -This is the runt ofter epoch 1.
```

19/0024 Cluster the dataset using the K-Means with algorithm with the Enite alue of objects 2 and 4 as Enitial seeds Solution: (7,8) & (16,9) core Emitial Seeds These data poloits one stored as two clusters. So 10=2. - Centroids: (7,8) & (16,9) steration: - Cooppose all the data points with the centroid and assign to the nearest et Cluster. data poent: (3,5) - calculate the distrone between the data possit and the centrolds of cluster and cluster 2. Dist (1, centrold1) = $\sqrt{(3-7)^2+(5-8)^2}$ $= \sqrt{4^2 + 3^2} = \sqrt{16 + 9}$ $=\sqrt{25}=5$ Dist (1, centrold 2) = \((8-16)^2 + (5-9)^2 $=\sqrt{13^2+4^2}$ $=\sqrt{169+16}=\sqrt{185}$ = 13.60

(3,5) is closer to cluster 2.

Object 3: (12,5)

Dist (3, centroid 1) =
$$\sqrt{(12-7)^2 + (5-8)^2}$$

= $\sqrt{5^2 + 3^2} = \sqrt{25 + 9}$

= $\sqrt{24} = 5.831$

Dist (3, centroid 2) = $\sqrt{(2-16)^2 + (5-9)^2}$

= $\sqrt{4^2 + 4^2} = \sqrt{16+16}$

= $\sqrt{22} = 5.66$

Object 3 is closer to cluster 2.

centroid: (x, y) (x, y)

(anternoid: (x, y) (x, y)

(entroid: (x, y) (x, y)

Centroid: (x, y) (x, y)

Dist (1, 13) $(28 + 14)$

Determined: $(5, 6.5)$ $(14 + 7)$

Dist (1, centroid) $(5, 6.5)$
 $(7-5)^2 + (8-6.5)^2$

= $\sqrt{2^2 + 1.5^2}$

= $\sqrt{4+2.25}$

= $\sqrt{6.25} = 2.5$

Dist(1, centroid) = \((7-14)^2 + (8-7)^2 V49+1 Object 1 belongs to the some cluster 1. Object 3: (2,5) centroid 1: (5,6.5) centroid 2: (14,7) Dist(3, centroid) = \((12-5)^2 + (5-6.5)^2 = V49 +2.25 = V51.25 abject 3 is closer to Dût (3, eastroid 2) = \((12-14)^2 + (5-7)^2 $=\sqrt{2^2+2^2}=\sqrt{8}$ Object 3 is closer to cluster 2 Cluster | cluster 2 (7.8) (16,9) (2,5)centrold: (5,6.5) (14,7) There is no disorge in the clusters. Therefore & means algorithm Terrinates with two clusters with the given data points.