Scheme of Evaluation

Internal Assessment Test 111 - MAR 2024

Sub: Database Management System Sub Code: | 21CS53
Date: |14 03-2024| Duration: | 90 mins thffs; 50 | Sem: v Branch: ISE
Answer SEMS':'::E)/ESFULL MARKS Di';/tlrairbltjst .
n

1 [Explain the select and project operation with syntax and examples. .What is [10] 3

union compatibility? How union differ from cross product. 3
4

2 |Define Domains, Attributes, Tuples, and Relations and also explain the [10] 5
characteristics of relation. S

3 |Define Transaction. Discuss Transaction states with a neat diagram and ACID [10] 3
properties of a transaction in detail 7

4 |[Explain about Binary Lock and Shared/Exclusive Lock [10] | 5,5
Why concurrency control and recovery are needed in DBMS? Explain types of [10] 55
problems that may occur when two simple transaction run concurrently with
examples.

6 [Consider the following COMPANY database [10] 3
EMP(Name,SSN,Salary,address, SuperSSN,Gender,Dno) 2
DEPT(DNum,Dname,MgrSSN)

PROJECT (Pname,Pnumber,Plocation,Dnum)

\Write the relational algebra queries for the following

() Retrieve the name, address, salary of employees who work for the Research
department. (ii) Find the names of employees who work on all projects
controlled

by department number 4. iii) Retrieve the SSN of all employees who either in
department no :4 or directly supervise an employee who work in dno 4.

SOLUTIONS

Question 1- Explain the select and project operation with syntax and examples. What is
union compatibility? How union differ from cross product.

Solution 1

The SELECT Operation

v

The SELECT operation is used to choose a subset of the tuples from a relation that satisfies a— selection
condition,

It restricts the tuples in a relation to only those tuples that— satisfy the condition.

It can also be visualized as a horizontal partition of the relation into two sets of tuples—those tuples that
satisfy the condition and are selected, and those tuples that do not satisfy the condition and are discarded.
For example, to select the EMPLOYEE tuples whose department is 4, or those whose salary is greater
than $30,000

cDno=4(EMPLOYEE)
oSalary=30000(EMPLOYEE)

In general, the SELECT operation is denoted by
ag<selection condition>(R)

where the symbol o (sigma) is used to denote the SELECT operator and the selection condition is a
Boolean expression (condition) specified on the attributes of relation R.
The Boolean expression specified 1n 1s made up of a number of clauses of the form:
<attribute name><comparison op><constant value>

Or
<attribute name><comparison op><attribute name>
Clauses can be connected by the standard Boolean operators and, or, and not to form a general selection
condition.
For example, to select the tuples for all employees who either work in department 4 and make over
$25,000 per year, or work in department 5 and make over $30,000:

o{Dno=4 AND Salary=25000) OR (Dno=5 AND
Salary=30000) EMPLOYEE)

¥ The Boolean conditions AND, OR, and NOT have their normal interpretation, as follows:

m (condl AND cond2) 1s TRUE if both (condl) and (cond2) are TRUE; otherwise,it 1s FALSE.
m (condl OR cond2) 1s TRUE if either (cond1) or (cond2) or both are TRUE; otherwise, 1t 1s FALSE.
m (NOT cond) 1s TRUE if cond 1s FALSE; otherwise, 1t 1s FALSE.
The SELECT operator i1s unary; that is, it i1s applied to a single relation. Hence, selection conditions
cannot involve more than one tuple.
The degree of the relation resulting from a SELECT operation—its number of attributes—is the— same
as the degree of R.
The SELECT operation is commutative; that 1s,
o (cond1){o(cond2)(R)) = o{cond2)(o(cond1)(R))

Ihe PROJECT Operation

The PROJECT operation, selects certamn columns from the table and discards the other columns.

The result of the PROJECT operation can be visualized as a vertical partition of the relation into two
relations: one has the needed columns (attributes) and contains the result of the operation, and the other
contaims the discarded columns.

For example, to list each employee’s first and last name and salary, we can use the PROJECT operation
as follows:

TlLname, Fname, Salary{(EMPLOYEE)

The general form of the PROJECT operation 1s

TU<attribute list=(R)

L |
where (pi) is the symbol used to represent the PROJECT operation, and is the desired sublist of attributes

from the attributes of relation R.

¥" The result of the PROJECT operation has only the attributes specified in in the same order as they appear

in the list. Hence, its degree 1s equal to the number of attributes 1n <attribute list>.
¥ The PROJECT operation removes any duplicate tuples, so the result of the PROJECT operation is a set

of distinet tuples, and hence a valid relation. This 1s known as duplicate elimination.

Question 2- Define Domains, Attributes, Tuples, and Relations and also explain the
characteristics of relation.

SOLUTION 2

¥ The relational model represents the database as a collection of relations.

Informally, each relation resembles a table of values or, to some extent, a flat file of records

¥" A relation is thought of as a table of values, each row in the table represents a collection of related data

v

v

values.

A row represents a fact that typically corresponds to a real-world entity or relationship. The table name
and column names are used to help to interpret the meaning of the values in each row.

In the formal relational model termmology,

a row —>a tuple, a column header —*an attribute, and the table —*a relation. The data type describing the
types of values that can appear in each column 1s represented by a domain of possible values.

Domains. Attributes. Tuples. and Relations

v

v

A domam D i1s a set of atomic values. By atomic means each value in the domam 1s indivisible in formal
relational model. A common method of specifying a domain 1s to specify a data type from which the data
values forming the domain are drawn.

Some examples of domains follow:

USA phone number: string of digits of length ten
SSN: string of digits of length nine0

Name: string of characters beginning with an upper case letter
GPA: a real number between 0.0 and 4.0
Sex: a member of the set | female, male }

Dept_Code: a member of the set | CMPS, MATH. ENGL, PHYS, PSYC, ... }

v A relation schema R, denoted by R(Al, A2, ... , An), is made up of a relation name R and a list of
attributes, Al, A2, ..., An.

v" Attribute: Aiis the name of a role played by some domain D in the relation schema R. D is called the
domain of Ai and is denoted by dom(Ai).

v Tuple: A tuple is a mapping from attributes to values drawn from the respective domains of those
attributes. A tuple 1s intended to describe some entity (or relationship between entities) in the mmniworld.

v" R is called the name of this relation.

v" The degree (or arity) of a relation is the number of attributes n of its relation schema.

v A relation of degree seven, which stores information about university students, would contain seven
attributes describing each student as follows:
STUDENT(Name, Ssn, Home phone, Address, Office_phone, Age, Gpa)

v" Relational Database: A collection of relations, each one consistent with its specified relational schema.

¥ A relation (or relation state) r of the relation schema R(Al. A2, An), also denoted by r(R). is a set
of n-tuples r = {tl1,12, ..., tm}. Each n-tuple t 1s an ordered list of n values t =<vva... V™

Cl istics of Relati

1. Ordering of Tuples in a Relation
¥" A relation is defined as a set of tuples. Mathematically, elements of a set have no order among them;
hence, tuples m a relation do not have any particular order.
v Similarly, when tuples are represented on a storage device, they must be organized in some fashion,
and it may be advantageous, from a performance standpoint, to organize them in a way that depends
upon their content.

2. Ordering of Values within a Tuple
¥ The order of attributes and their values is not that important as long as the correspondence between
attributes and values is maintained.
¥" A tuple can be considered as a set of (<attribute>,<value>) pairs, where each pair gives the value of
the mapping from an attribute A1 to a value vi from dom(Ai). The ordering of attributes is not
important, because the attribute name appears with its value.

3. Values and NULLs in the Tuples
¥ Each value ina tuple is an atomic value; that is, it is not divisible into components.
¥ An important concept is NULL values, which are used to represent the values of attributes that may
be unknown or may not apply to a tuple.
¥ NULL values has several meanings, such as value unknown, value exists but is not available, or
attributedoes not apply to this tuple.

4. Interpretation (Meaning) of a Relation
¥ Each tuple in the relation can then be interpreted as a fact or a particular instance of the assertion.
¥ Each relation can be viewed as a predicate and each tuple in that relation can be viewed as an
assertion for which that predicate 1s satisfied (1.e., has value true) for the combination of values in it.
¥ Example:There exists a student having name Benjamin Bayer, having SSN 305-61-2435, having age
19, etc

Question 3- Define Transaction. Discuss Transaction states with a neat diagram and ACID properties
of a transaction in detail

SOLUTION 3

A transactionis an executing program that forms alogical unit of database processing. A transaction
includes one or more database access operations—these can include insertion, deletion, modification,
or retrieval operations. The database operations that form a transaction can either be embedded within
an application program or they can be specified interactively via a high-level query language such as
SQL. One way of specifying the transaction boundaries is by specifying explicit begin transaction and
end transaction statements in an application program; in this case, all database access operations
between the twoare considered asformingonetransaction. Asingle application program maycontain
more than one transactionifit contains several transaction boundaries. Ifthe database operationsina
transaction do not update the database but only retrieve data, the transaction is called a read-only
transaction; otherwise it is known as a read-write transaction.
State transition diagram illustrating the states for

transaction execution.
Read, Write

Begin ﬂ End
transaction 2 transaction TR Commit e
—— - e —_—

Active Partilly committed > CCommitted >

Abort l Abort l

Transaction States and Additional Operations

Atransactionisan atomic unit of work thatshould eitherbe completed inits entirety or not done at
all. For recovery purposes, the system needs to keep track of when each transaction starts, terminates,
and commits or aborts . Therefore, the recovery manager of the DBMS needs to keep track of the
following operations:

Figure 21.4 shows a state transition diagram that illustrates how a transaction moves through its
execution states .Atransactiongoesintoan active stateimmediately afterit startsexecution, where it
can execute its READ and WRITE operations. When the transaction ends, it moves to the partially
committed state. At this point, some recovery protocols need to ensure that a system failure will not
result in an inability to record the changes of the transaction permanently (usually by recording changes
inthe systemlog). Once this check is successful, the transaction is said to have reached its commit point
and enters the committed state. When a transaction is committed, it has concluded its execution
successfully and all its changes must be recorded permanently in the database, even if a system failure
occurs.

However,atransactioncan gotothe failed stateifone ofthe checksfailsorifthe transactionisaborted
during its active state. The transaction may then have to be rolled back to undo the effect of its WRITE
operations on the database. The terminated state corresponds to the transaction leaving the system.
Thetransactioninformationthatis maintained in systemtableswhilethe transaction hasbeenrunning
is removed when the transaction terminates. Failed or aborted transactions may be restarted later—
either automatically or after being resubmitted by the user—as brand new transactions.

Desirable Properties of Transactions

Transactions should possess several properties, often called the ACID properties; they should be
enforced by the concurrency control and recovery methods of the DBMS.

The following are the ACID properties:

¥ Atomicity. A transaction is an atomic unit of processing; it should either be
performed in its entirety or not performed at all.

® Consistency preservation. A transaction should be consistency preserving,
meaning that if it is completely executed from beginning to end without
interference from other transactions, it should take the database from one
consistent state to another.

® Isolation. A transaction should appear as though it is being executed in iso-
lation from other transactions, even though many transactions are executing

Question 4- Explain about Binary Lock and Shared/Exclusive Lock

SOLUTION 4

Binary Locks. A binary lock can have two states or values: locked and unlocked (or 1 and 0.for
simplicity). A distinct lock is associated with each database item X.If the value ofthe lock on Xis 1, item X
cannotbeaccessedbyadatabase operationthatrequeststheitem. Ifthe value ofthelockon Xis0, the
itemcanbeaccessedwhenrequested, andthelockvalueischangedto 1. Werefertothe current value
(or state) of the lock associated with item X as lock(X).

Two operations, lock_item and unlock_item,are used with binary locking .A transaction requests
accesstoanitem X byfirstissuingalock_item(X) operation. IfLOCK(X)=1 thetransactionisforcedto
wait. IFLOCK(X)=0,itissetto 1 (thetransactionlockstheitem)andthetransactionis allowedtoaccess
item X. Whenthe transactionis through using the item, itissues an unlock_item(X)operation, which
setsLOCK(X)backtoO (unlocksthe item)sothatX maybe accessedbyothertransactions. Hence, a
binary lock enforces mutual exclusion on the data item. A description of the lock_item(X) and
unlock_item(X) operations is shown in Figure 22.1.

lock_Item(X):
B: if LOCK(X)=0 (* item is unlocked *)
then LOCK(X) 1 (* lock the item *)
else
begin

wait (until LOCK(X) =0
and the lock manager wakes up the transaction);

gotoB
end;
unlock_Item(X):
LOCK(X) « 0; (* unlock the item *) Flgure 22.1
if any transactions are waiting Lock and unlock oper-

then wakeup one of the waiting transactions; ations for binary locks.

If the simple binary locking scheme described here is used, every transaction must obey the following
rules:
1. A transaction T must issue the operation lock_item(X) before any
read_item(X) or write_item(X) operations are performed in T.
2. A transaction T"must issue the operation unlock_item(X) after all read_item(X)
and write_item(X) operations are completed in T
3. A transaction T will not issue a lock_item(X) operation if it already holds the
lock on item X.'
4. A transaction T will not issue an unlock_item(X) operation unless it already
holds the lock on item X.

Shared/Exclusive (or Read/Write) Locks: The preceding binary locking scheme is too restrictive for
databaseitems because atmost, onetransactioncanholdalockonagivenitem.Weshould allow
several fransactions to access the same item Xif they all access X for reading purposes only. This is
because read operations on the same item by different transactions are not conflicting. However,if a
transaction is to write an item X.it must have exclusive access to X.

Forthis purpose, adifferenttypeoflock called amultiple-modelockisused. Inthisscheme—called
shared/exclusive or read/write locks—there are three locking operations: read_lock(X), write_lock(X),
andunlock(X). Alock associated with anitem X, LOCK(X), now has three possible states: read-locked,
write-locked, orunlocked. Aread-locked itemis also called share-locked because othertransactions are
allowedto read the item, whereas a write-lockeditem is called exclusive-locked because asingle
transaction exclusively holds the lock on the item.
When we use the shared/exclusive locking scheme, the system must enforce the following rules:
1. Atransaction T mustissue the operation read_lock(X) orwrite_lock(X) before any read_item(X)
operation is performed in T.

2. Afransaction T must issue the operation write_lock(X) before any write_item(X) operationis
performed inT.

3. Atransaction T must issue the operation unlock(X) after all read_item(X) and write_item(X)
operations are completedin T.
4. Atransaction Twillnotissuearead_lock(X)operationifitalreadyholdsaread(shared)lockorawrite
(exclusive) lock on item X. This rule may be relaxed,as we discuss shortly.

5. Atransaction Twillnotissue awrite_lock(X)operationifitalreadyholdsaread (shared)lock orwrite
(exclusive) lock on item X.This rule may also be relaxed,as we discuss shortly.

6. Atransaction T will not issue an unlock(X) operation unlessit already holds a read (shared) lock ora
write (exclusive) lock on item X.
ConversionofLocks. Sometimesitisdesirabletorelaxconditions4and 5inthe precedinglistinorder
to allow lock conversion; thatis, atransactionthat already holds alock onitem X is allowed under
certain conditions to convert the lock from one locked state to another. For example, itis possible for a
transaction Ttoissuearead_lock(X)andthen laterto upgrade thelock by issuing awrite_lock(X)
operation. If T isthe only transaction holding a read lock on X atthe time itissues the write_lock(X)
operation, the lock can be upgraded; otherwise, the transaction mustwait. Itis also possible fora
transaction T toissue awrite_lock(X)andthenlaterto downgradethelockbyissuingaread _lock(X)
operation

read lockX):
B: o LOCKO) « "unlockod™
then begin LOCKIX) «— "“mad-lockad™;
no_of _roads(d) «- 1
st
oloo f LOCKX) « “read lockod™
then no_ of reads{X) «— no_of reads{0 + 1
olso bogin
wait (untill LOCKOX) < “unbockod™
and the lock managor waklios up Tho Iransacton);
Qoo B
ond
write loak(X0):
B: 1 1LOCK) = "unlockod™
then LOCK{X) <« “wmto lockod™
ol begin
wast (untdl LOCK LX) « “unlociood™
and the lock managor walkios up the Iransaction)
goto B
end;
unlock (X):
i LOCKX) — “write-dockod™
hon begin LOCK LX) «— “undocked™;
wakoup onoe of the wasting transactons, if any

ond
alsa it LOCKX) « “read fockod®
1then begin
no_of readallX) «-no_of roaacs(X) 1; Figure 22.2
no_of _roads(X) =0 L oclong and unlockang
thon begin LOCKLX) « “uniocked™; oparations for two-

wakoup one of thee g sons, i anvy moda (road-wito o
ond sharod axcluswa)

end: lockes.

Question 5- Why concurrency control and recovery are needed in DBMS? Explain types of
problems that may occur when two simple transaction run concurrently with examples.

SOLUTION 5

Why Concurrency Control Is Needed

Several problems can occur when concurrent transactions execute in an uncontrolled manner. We
illustrate some of these problems by referring to a much simplified airline reservations database in
which arecord is stored for each airline flight. Each record includes the number of reserved seats on
that flight as a named (uniquely identifiable) data item, among other information. Figure 21.2(a) shows a
transaction T1 that transfers N reservations from one flight whose number of reserved seats is stored in
thedatabase itemnamed Xto anotherflight whose number of reserved seatsis stored inthe database
item named Y. Figure 21.2(b) shows a simpler transaction T2 that just reserves M seats on the first flight
(X) referenced in transaction T1.2

(a) T, (b) Ts IT=lgure 21.2

. , wo sample transac-
read_item(X); read_item(X); tions. (a) Transaction
X=X-N, X=X+M, 7,. (b) Transaction 7.,
write_item(X); write_item(X);
read_item(Y);
Y=Y+N,
write_item(Y);

Nextwediscuss thetypes of problemswe may encounter with these two simple transactionsifthey run
concurrently.

1)The Lost Update Problem. This problem occurs when two transactions that access the same database
items have their operations interleaved in a way that makes the value of some database items
incorrect.Suppose that transactions T1 and T2 are submitted at approximately the same time, and
supposethattheiroperationsareinterleavedasshowninFigure21.3(a); thenthefinalvalue ofitem Xis
incorrectbecause T2readsthe value of Xbefore T 1 changesitinthe database, andhencethe updated
valueresultingfrom T1islost.Forexample,if X=80 atthe start (originally there were 80 reservationson
the flight),N= 5 (T1 transfers 5 seat reservations from the flight corresponding to X to the flight
corresponding to Y),and M=4 (T2 reserves 4 seats on X),the final result should be X = 79.However,in
the interleaving of operations shown in Figure 21.3(a), it is X = 84 because the update in T1 that
removed the five seats from X was lost.

(a) T % Figure 21.3
Some problems that occur when concurrent
read_item(X): execution is uncontrolled. (a) The lost update
X:=X-N: problem. (b) The temporary update problem.
read_item(X); (c) The incorrect summary problem.
X=X+ M,

Time write_item(X);
read_item(Y); rite_ item(X): Item X has an incorrect value because
WOV its update by T, is lost (overwritten).

Y=Y+N,
v write_item(Y);

2)The Temporary Update (or Dirty Read) Problem. This problemoccurs when one transaction updates a
database item and then the transaction fails for some reason .Meanwhile, the updated item is accessed
(read) by another transaction before it is changed back to its original value. Figure 21.3(b) shows an
examplewhere T1updatesitem X and thenfails before completion, sothe system mustchange Xback
toits original value. Before itcan do so, however, transaction T2 reads the temporary value of X, which
willnotbe recorded permanently inthe database because ofthefailure of T1.The value of item X thatis
read by T2 is called dirty databecause ithas been created by a transaction thathas not completed and
committed yet; hence, this problem is also known as the dirty read problem.

® T, T

read_item(X);
X=X-N,
write_item(X);

Time read_item(X);
X=X+ M,

write_item(X); i
Transaction T, fails and must change

read_item(Y); the value of X back to its old value;
meanwhile T, has read the temporary
incorrect value of X.

3)TheIncorrect Summary Problem. Ifone transactionis calculating anaggregate summary functionona
number of database items while other transactions are updating some of these items, the aggregate
function may calculate some values before they are updated and others after they are updated. For
example, supposethatatransaction T3is calculating the totalnumberof reservations on all the flights;
meanwhile, transaction T1 is executing. If the interleaving of operations shown in Figure 21.3(c) occurs,
the result of T3 will be off by an amount N because T3 reads the value of X after N seats have been

subtracted from it but reads the value of Y before those N seats have been added toit.

(c) T, Ty

sum = 0,
read _item(A);
sum = sum + A;

read_item(X);
X=X-N,
write_item(X);
read_item(X);
sum =sum + X
read_item(Y);
sum =sum+Y;

T,reads X after N is subtracted and reads
-«—— Y before N is added; a wrong summary
is the result (off by N).

read_item(Y);
Y=Y+N,
write_item(Y);

4)The Unrepeatable Read Problem. Another problem that may occuris called unrepeatable read, where
atransaction T reads the same item twice and the item is changed by another transaction Tbetween the
two reads. Hence, T receives different values for its two reads of the same item. This may occur, for
example, if during an airline reservation transaction, a customer inquires about seat availability on
several flights. When the customer decides on a particular flight, the transaction then reads the number
of seats on that flight a second time before completing the reservation ,and it may end up reading a
different value for the item.

Question 6- Consider the following COMPANY database
EMP(Name,SSN,Salary,address, SuperSSN,Gender,Dno)
DEPT(DNum,Dname,MgrSSN)

PROJECT (Pname,Pnumber,Plocation,Dnum)

Write the relational algebra queries for the following

()Retrieve the name, address, salary of employees who work for the Research
department.

(i) Find the names of employees who work on all projects controlled

by department number 4.

iii) Retrieve the SSN of all employees who either in

department no :4 or directly supervise an employee who work in dno 4.

SOLUTION 6

Query 1- Retrieve the name and address of all employees who work for the

.Wn;h' department.

RESEARCH_DEPT ¢~ Opname=Rescarch (DEPARTMENT)
RESEARCH_EMPS « (RESEARCH_DEPT bdg o EMPLOYEE)
RESULT € Tlrname, Lname, Address(RESEARCH_EMPS)

As a single expression, this query becomes

TEname, Lname, Address (ODnnmo-'Rcmlch' (DEPARTMENT
B4 popurmiber=Dnol EMPLOYEE))

(ii) Find the names of employees who work on all projects controlled by department number
4.

Query 3. Find the names of employees who work on all the projects
controlled by department number 5.

DEPT5_PROJS(Pno) Tenumber(Gonum=s(PROJECT))
EMP_PROJ(San, Pno) ¢ Teaan, Pro WORKS_ON)
RESULT_EMP_SSNS ¢« EMP_PROJ + DEPT5_PROJS)
RESULT € ,ame, Frame (RESULT_EMP_SSNS * EMPLOYEE)

iii) Retrieve the SSN of all employees who either in department no :4 or directly supervise
an employee who work in dno 4.
For example, to retrieve the Social Security numbers of all employees who either work in department 5
or directly supervise an employee who works m department 5,
DEP5_EMPS « 6Dno=35(EMPLOYEE)
RESULT! « nSsn(DEP5_EMPS)
RESULTZ(Ssn) «— aSuper_ssn{(DEP5 EMPS)
RESULT « RESULT1 U RESULT2

