
Page 1 of 9

USN

INTERNAL ASSESSMENT TEST – I

Sub Computer Organization and Architecture Code BEC306C

Date 19/12/2023 Duration 90 mins Max Marks 50 Sem III Branch ECE

Answer any 5 full questions

 Marks CO RBT

1.
a) Describe the basic functional units of a computer.

b) Describe the basic performance equation of the computer processor.

[7]

[3]

CO1

CO1

L1

L2

2
List and detail the steps needed to execute the machine instruction: Add LOCA, R0 [10] CO1 L4

3
Explain the following

i) Byte addressability ii) Big Endian assignment iii) Little Endian assignment. [10] CO1 L2

4
Discuss the steps involved in running one application program using OS routines with a

neat time-line diagram. [10] CO1 L2

5
a. What is Straight Line Sequencing? Explain with an example.

b. What is word alignment of a machine? Explain with examples
[5]

[5]

CO1

CO1

L2

L2

6
Write a program that can evaluate the expression 𝐴 × 𝐵 + 𝐶 × 𝐷 in a single accumulator

processor. Assume that the processor has Load, Store, Multiply and Add instructions that has

all values fit in the accumulator.

[10] CO1 L5

7

a. Write a program to evaluate the expression 𝐴 × 𝐵 + 𝐶 × 𝐷 using 3-operand

(Address) Instructions

b. Write a program to evaluate the expression 𝐴 × 𝐵 + 𝐶 × 𝐷 using 2-operand

(Address) Instructions

[5]

[5]
CO1

CO1

L5

L5

8

Give a short sequence of machine instruction for the task “Add the contents of memory

location A to those of location B and place the answer in location C”. Use only Load and

Store instructions to transfer the data between memory and general purpose registers. Do not

destroy the contents of either location A or B.

[10] CO1 L5

Page 2 of 9

Solution:

Q1.

1.
a) Describe the basic functional units of a computer.

b) Describe the basic performance equation of the computer processor.

Sol:

A.

Functional Units
 A computer consists of five functionally independent main parts: input, memory, arithmetic

and logic, output and control units as shown in fig 1.1.

 The input unit accepts coded information from human operators, from electromechanical

devices such as keyboards or from other computers over digital communication line. The

information received is either stored in the computer memory for later reference or immediately

used by the arithmetic and logic circuitry to perform the desired operations. The processing steps

are determined by the program stored in the memory. Finally the results are shown on the output

unit. All of these actions are co-ordinated by the control unit. We refer to the arithmetic and logic

circuits in conjunction to the control circuits as the processor and input and output units are referred

to as input-output (I/O) unit.

Instructions or machine instructions are explicit commands that

• Govern the transfer of information within a computer as well as between the

computers and its I/O devices.

• Specify the arithmetic and logic operations to be performed.

A list of instructions that perform a task is called program. The computer is completely

controlled by a stored program except for a possible external interruption by an operator or by I/O

Page 3 of 9

devices connected to the machine. Data is used to mean any digital information. Each number,

character or instruction is encoded as a string of binary digits known as bits each having one of two

possible values 0 or 1.

Input Unit
 Computers accept the coded information through input units which read the data. The well

known input device is Keyboard. When a key is pressed, the corresponding letter or digit is

automatically translated into its corresponding binary code and transmitted over a cable to either the

memory or processor.

Memory Unit
 The memory unit is used to store program and data. There are two classes of storage known

as primary and secondary.

 Primary memory is a fast storage that operates at electronic speeds. Programs are stored in

the memory while they are executed. The memory contains large number of semiconductor storage

cells each capable of storing one bit but instead are processed as groups of fixed size called words.

The memory is organized so that a word can be stored or retrieved in one basic operation. A distinct

address is associated to each word in the memory. Addresses are numbers that identify successive

locations.

 Programs must reside in the memory during execution. Instructions and data can be read out

or written into the memory under the control of the processor. Memory in which any location can

be reached in short and fixed amount of time after specifying its address is called random-access

memory (RAM). The small, fast RAM units are called caches.

 The additional cheaper secondary storage is used when large amount of data and many

programs have to be stored particularly for information that is accessed infrequently.

Arithmetic and Logic Unit (ALU)
 Any arithmetic and logic operation is initiated by bringing the required operands into

the processor where the operation is performed by the ALU. When the operands are brought into

the processor they are stored in high speed storage elements called registers. Access time to register

is faster than access time to the fastest cache unit in the memory hierarchy. The control and the

arithmetic logic units are many times faster than any other devices connected to a computer system.

Output Unit
 The output unit is a counterpart of input unit. Its function is used the processed results to the

outside world. The most familiar example of such a device is a printer.

Control Unit
 The control unit is a well defined physically separate unit that interacts with other parts of

the machine. The control unit sends the control signals to other units and senses their states. Timing

signals are generated by the control circuits that determine when a given action is to take place. Data

transfer between memory and processor is also controlled unit through timing signals. A large set

of control lines (wires) carries the signals used for timing and synchronization of events in all units.

B.

Basic Performance Equation
 Let 𝑇 be the processor time required to execute a program that has been prepared by some

high level language. The compiler generates machine level object program that corresponds to

source program. Assume that complete execution of the program requires the execution of 𝑁

machine language instructions. Suppose that the average number of basic steps needed to

execute one machine instruction is 𝑆, where each basic step is completed in one clock cycle. If

Page 4 of 9

the clock rate is 𝑅 cycles per second, the program execution time is given by basic performance

equation.

𝑇 =
𝑁 × 𝑆

𝑅

 To achieve high performance, the value of 𝑇 must be reduced which can be done by reducing

𝑁 and 𝑆, and increasing 𝑅. The value of 𝑁 is reduced if the source program is compiled in fewer

machine instructions. The value of 𝑆 is reduced if instructions have a smaller number of basic

steps to perform or if the execution of instructions are overlapped. Using a higher-frequency

clock increases the value of 𝑅 which means the time required to complete a basic execution step

is reduced.

Q.2. List and detail the steps needed to execute the machine instruction: Add LOCA, R0

Sol:

Assume that the instruction is stored in memory location INSTR and this address is initially

in register PC.

 The steps needed to execute this machine instruction are listed below:

• Transfer the contents of PC to register MAR

• Issue a Read command to memory, and then wait until it has transferred the

requested word into register MDR.

• Transfer the instruction from MDR into IR and decode it.

• Transfer the address LOCA from IR to MAR.

• Issue a Read command and wait until MDR is loaded.

• Transfer contents of MDR to the ALU.

• Transfer contents of R0 to the ALU.

• Perform addition of the two operands in the ALU and transfer result into

R0.

• Transfer contents of PC to ALU.

• Add 1 to operand in ALU and transfer incremented address to PC.

Q.3. Explain the following

i) Byte addressability ii) Big Endian assignment iii) Little Endian assignment

Sol:

Byte Addressability

A byte is always 8 bits, but the word length typically ranges from 16 to 64 bits.

It is impractical to assign distinct addresses to individual bit locations in the memory.

The most practical assignment is to have successive addresses refer to successive byte locations in the memory –

byte-addressable memory.

Byte locations have addresses 0, 1, 2, … If word length is 32 bits, they successive words are located at addresses 0,

4, 8,…

Big-Endian and Little-Endian Assignments
 The name big-endian is used when the lower byte addresses are used for the most significant

bytes (the leftmost bytes) of the word. The little-endian is used for the opposite ordering, when the

lower byte addresses for the less significant bytes (the rightmost bytes) of the word. In both cases,

byte addresses 0,4,8, …, are taken as the address for the successive words in the memory and are the

Page 5 of 9

addresses used when specifying the memory read and write operation for the words. The two ways

that the byte addresses can be used across the words as shown in Fig 1.11.

Fig 1.11: a) Big-endian assignment b) Little-endian assignment

 The word locations have aligned addresses where the word begins at a byte address that is a

multiple of number of bytes in a word. If the word length is 16 (2 bytes), aligned words begins at

byte addresses 0,2,4 ….

Q4. Discuss the steps involved in running one application program using OS routines with a

neat time-line diagram

Sol:

Consider a system with one processor, one disk and one printer. When the application program has

been compiled from a high language form to machine language form and stored on the disk. The

first step is to transfer this file into the memory. When the transfer is complete, execution of the

program is started. Assume part of the program’s task involves reading a data file from the disk in

to the memory, performing some computations on the data and printing the results. When the

execution of the program reaches the point where the data file is needed, the program requests the

operating system to transfer the data file from the disk to the memory. The OS performs this task

and passes the execution control back to the application program, which then proceeds to perform

the required computation. When the computation is completed and the results are ready to be

printed, the application program again sends the request to the operating system. An OS routine is

then executed to cause the printer to print the results.

Page 6 of 9

 The execution control passes back and forth between application program and OS routines.

This sharing of processor execution time is illustrated by a time line diagram as shown in Fig 1.5.

During the time period 𝑡0 to 𝑡1, an OS routine initiates the application loading program from the

disk to the memory, waits until the transfer is completed, and then passes execution control to the

application program. A similar pattern of activity occurs during period 𝑡2 to 𝑡3 and period 𝑡4 to 𝑡5 ,

when the operating system transfers the data file from the disk and print the results. At 𝑡5, the

operating system may load and execute another application program. Notice that the disk and

processor are idle during most of the time period 𝑡4 to 𝑡5 . The operating system manages the

concurrent execution of several application programs to make best possible use of computer

resources. This pattern of concurrent execution is called multiprogramming or multitasking

Q.5

a. What is Straight Line Sequencing? Explain with an example.

b. What is word alignment of a machine? Explain with examples

Sol:

Instruction Execution and Straight-Line Sequence
 We assume computer allows one memory operand per instruction and has a number of

processor registers. Fig 1.12 shows a program segment in the memory of a computer. The word

Page 7 of 9

length is 32 bits and the memory is byte addressable. Each instruction is 4 bytes long, the second

and third instructions start at addresses 𝑖 + 4 and 𝑖 + 8.

 The Program Counter (PC) contains the address of the instruction to be executed next. To

begin executing a program, the address of its fist instruction must be placed in to PC. Then the

processor control circuits use the information in the PC to fetch and execute the instructions, one at

a time, in the order of increasing addresses. This is called straight-line sequencing.

 Executing a given instruction is a two phase-procedure. In the first phase called instruction

fetch, the instruction is fetched from the memory location whose address is in the PC. This

instruction is placed in the instruction register (IR) in the processor. At the start of second phase

called instruction execute, the instruction in the IR is examined to determine which operation is to

be determined.

⚫ Word alignment

A byte is always 8 bits but the word length typically ranges from 16 to 64 bits. The

successive addresses refer to successive byte locations in the memory. The term byte-

addressable memory is used for this assignment. Byte locations of addresses 0,1,2 …Thus,

if word length of the machine is 32 bits, successive words are located at addresses 0,4,8, …,
with each word consisting of four bytes.

Page 8 of 9

⚫ Words are said to be aligned in memory if they begin at a byte addr. that is a

multiple of the num of bytes in a word.

⚫ 16-bit word: word addresses: 0, 2, 4,….

⚫ 32-bit word: word addresses: 0, 4, 8,….

⚫ 64-bit word: word addresses: 0, 8,16,….

Q6. Write a program that can evaluate the expression 𝑨 × 𝑩 + 𝑪 × 𝑫 in a single

accumulator processor. Assume that the processor has Load, Store, Multiply and Add

instructions that has all values fit in the accumulator.

Sol:

Example: Evaluate 𝑨 × 𝑩 + 𝑪 × 𝑫

One-Address

Load A ; AC ← A

Multiply B ; AC ← AC * B

Store T ; T ← AC

Load C ; AC ← [C]

Multiply D ; AC ← AC * [D]

Add T ; AC ← AC + [T]

Store X ; X ← AC

Q.7:

Write a program to evaluate the expression 𝐴 × 𝐵 + 𝐶 × 𝐷 using 3-operand (Address)

Instructions

Sol:

Three-Address

Multiply A, B, R1 ; R1 ← [A] * [B]

Multiply C, D, R2 ; R2 ← [C] * [D]

Add R1, R2, X ; X ← [R1] + [R2]

Write a program to evaluate the expression 𝐴 × 𝐵 + 𝐶 × 𝐷 using 2-operand (Address)

Instructions

Sol:

Two-Address

Move A, R1 ; R1 ← [A]

Multiply B, R1 ; R1 ← [R1] + [B]

Page 9 of 9

Move C, R2 ; R2 ← [C]

Multiply D, R2 ; R2 ← [R2] + [D]

Add R1, R2 ; R2 ← [R1] + [R2]

Move R2, X ; X ← [R2]

Q.8: Give a short sequence of machine instruction for the task “Add the contents of memory

location A to those of location B and place the answer in location C”. Use only Load and

Store instructions to transfer the data between memory and general purpose registers. Do

not destroy the contents of either location A or B.

Sol:

Load A, R1 ; R1 ← [A]

Add B, R1 ; R1 ← [B] + [R1]

Store R1, C ; C ← [R1]

