
INTERNAL ASSESSMENT TEST – II Solution

Sub: Computer Organization and ARM

Microcontrollers (21EC52)

USN

INTERNAL ASSESSMENT TEST – II

Sub: Computer Organization and ARM Microcontrollers Code: 21EC52

Date: 30/01/24 Duration: 90 mins Max Marks: 50 Sem: V Branch: ECE

Marks CO RBT

1
(a) Compare CISC and RISC processors.

(b) Give notes on AMBA Bus protocol.

[5]

[5]
CO3 L2

2 With the help of neat block diagram, explain Embedded system hardware in detail. [10] CO3 L2

3 Explain the different processor modes of the ARM processor with the help of relevant diagrams. [10] CO3 L2

4 With the help of neat block diagram, Explain the data flow of the ARM processor. [10] CO3 L2

Answer any 5 full questions

Marks CO
RB

T

5 Explain the pipeline concept in ARM Processor and its execution sequence with the help of neat diagram. [10] CO1 L2

6 Explain in detail about three different hardware core extensions for ARM processors. [10] CO3 L2

7

Give the control sequence for the execution of the following instructions

(a) MOVS r0, r1, LSL #1

(b) RSB r0, r1, #0

[5]

[5]
CO3 L3

8

Give the control sequence for the execution of the following instructions

(a) UMULL r0, r1,r2,r3

(b) LDMIA r0!, {r1-r3}

[5]

[5]
CO3 L3

CI CCI

HOD

(a) Compare CISC and RISC processors.

(b) Give notes on AMBA Bus protocol.

Differentiate CISC and RISC

2. With the help of neat block diagram, explain Embedded

system hardware in detail.

Embedded System Hardware

Figure 2: An Example of an ARM-based embedded device, a microcontroller

3. Explain the different processor modes of the ARM

processor with the help of relevant diagrams.

21TM 2139v10 The ARM Architecture

Processor Modes
■ The ARM has seven basic operating modes:

■ User : unprivileged mode under which most tasks run

■ FIQ : entered when a high priority (fast) interrupt is raised

■ IRQ : entered when a low priority (normal) interrupt is raised

■ Supervisor : entered on reset and when a Software Interrupt

instruction is executed

■ Abort : used to handle memory access violations

■ Undef : used to handle undefined instructions

■ System : privileged mode using the same registers as user mode

22TM 2239v10 The ARM Architecture

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort

r0

r1

r2

r3

r4

r5

r6

r7

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort
r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

FIQ ModeIRQ Mode

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)

r14 (lr)

Undef Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)

r14 (lr)

SVC Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)

r14 (lr)

Abort Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)

The ARM Register Set

23TM 2339v10 The ARM Architecture

Register Organization Summary

User

mode

r0-r7,

r15,

and

cpsr

r8

r9

r10

r11

r12
r13

(sp)r14

(lr)

spsr

FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r0

r1

r2

r3

r4

r5

r6

r7

User

r13

(sp)r14

(lr)

spsr

IRQ

User

mode

r0-r12,

r15,

and

cpsr

r13

(sp)r14

(lr)

spsr

Undef

User

mode

r0-r12,

r15,

and

cpsr

r13

(sp)r14

(lr)

spsr

SVC

User

mode

r0-r12,

r15,

and

cpsr

r13

(sp)r14

(lr)

spsr

Abort

User

mode

r0-r12,

r15,

and

cpsr

Thumb state
Low
registers

Thumb state
High
registers

Note: System mode uses the User mode register set

24TM 2439v10 The ARM Architecture

4. With the help of neat block diagram, Explain the data flow of the

ARM processor.

5. Explain the pipeline concept in ARM Processor and its

execution sequence with the help of neat diagram.

PipeLine

PipeLine

PipeLine

Pipeline Executing Characteristics

Pipeline Executing Characteristics

6. Explain in detail about three different hardware core extensions

for ARM processors.

Core Extensions
(i) Cache and Tightly Coupled Memory

(ii) Memory Management

● Non Protected Memory

● Memory Protection Unit

● Memory Management Unit

(iii) Coprocessors

● Coprocessors can be attached to the ARM processor. A

coprocessor extends the processing features of a core by

extending the instruction set or by providing configuration

registers.

● More than one coprocessor can be added to the ARM

core via the coprocessor interface.

● The coprocessor can be accessed through a group of

dedicated ARM instructions that provide a load-store type

interface.

● Consider, for example, coprocessor 15: The ARM

processor uses coprocessor 15 registers to control the

cache, TCMs, and memory management.

7. Give the control sequence for the execution of the

following instructions

(a)MOVS r0, r1, LSL #1

(b)RSB r0, r1, #0

□ Example 2

■ PRE: r0 = 0x00000000, r1 = 0x80000004

■ MOVs r0, r1, LSL #1 ; r0 = r1 *2

■ POST r0 = 0x00000008, r1 = 0x80000004

□ RSB : reverse subtract

■ RSB r0, r1, r2; r0 = r2 – r1

8. Give the control sequence for the execution of the following

instructions

(a) UMULL r0, r1,r2,r3

(b)LDMIA r0!, {r1-r3}

□ UMULL : unsigned multiply long

■ UMULL r0, r1, r2, r3; [r1,r0] = r2*r3

Multiple-Register Transfer (Cont.)
□ Example 9

■ PRE:

mem32[0x80018] = 0x03,

mem32[0x80014] = 0x02,

mem32[0x80010] = 0x01, r0

= 0x00080010,

r1 = r2 = r3= 0x00000000

■ LDMIA r0!, {r1-r3}, or LDMIA r0!, {r1, r2,

r3}

□ Register can be explicitly listed or use the “-” character

Pre-Condition for LDMIA Instruction

0x80020 0x00000005

0x8001c 0x00000004

0x80018 0x00000003

0x80014 0x00000002

0x80010 0x00000001

0x8000c 0x00000000

Memory Address Data

R0 = 0x80010 R1=0x00000000

R3=0x00000000

R2=0x00000000

Figure 1

Post-Condition for LDMIA Instruction

0x80020 0x00000005

0x8001c 0x00000004

0x80018 0x00000003

0x80014 0x00000002

0x80010 0x00000001

0x8000c 0x00000000

Memory Address Data

R0 = 0x8001c

R3=0x00000003

R2=0x00000002

R1=0x00000001

Figure 2

