CMR

INSTITUTE OF USN | | | | | | | ‘ ‘ | |
TECHNOLOGY
Internal Assesment Test - 11
Sub: | Computer Organization and Architecture Code: BEC306C
Date: 19/01/2024 Duration: |90 mins | Max Marks: = 50 Sem: 3™ Branch: ECE
Answer Any FIVE FULL Questions
OBE
Marks cO RBT
1 With an example and blockdiagram, discuss the basic operational concepts of
©computer. [10] CO2 L2
2. What are assembler directives? Explain any four assembler directive. [10] CO2 L2
3. With a neat block diagram describe the input and output operations. [10] CO2 L2
4. Define Subroutine. Explain subroutine linkage using a link register. [10] CO2 L2
5. Explain various types of rotate instructions. [10] CO2 L2
6. Explain how I/O devices can be interfaces with a block diagram.
[10] CO2 L2

Solutions: 1

Basic Operational Concepts

To perform a given task. an appropriate program consisting of a list of instructions 1s
stored in the memory. Individual instructions are brought from the memory mto the
processor, which executes the specified operations. Data to be used as operands are also
stored in the memory. A typical mstruction may be

Add LOCA, RO

This instruction adds the operand at memory location LOCA to the operand in a
register in the processor. RO. and places the sum in the register R0. The original contents of
location LOCA are preserved whereas those of RO are overwritten. First the mnstruction is
fetched from the memory into the processor. Next the operand at LOCA is fetched and added
to the contents of R0. Finally the resulting sum is stored in register RO.

Transfers between memory and processor are started by sending the address of the
memory location to be accessed to the memory unit and issuing the appropriate control
signals. The data 1s transferred to or from the memory. The memory and processor connection
1s shown m Fig 1.2.

B

iR
\/
N) AV
MAR MDE
Control

BC Ea

By
IR

ALU
Phu.-]
n general pwrpose registers

Fig 1.2 Comections between the processor and memory

The Instruction register (IR) holds the mstruction that is currently being executed. Its
output is available to control circuits which generate the timing signals that control various
processing elements involved in executing the mstruction

The Program Counter (PC) holds the address of the next mstruction to be fetched and
executed. During the execution of an mstruction. the contents of the PC are updated to
comrespond to the address of the next mstruction to be executed. MAR and MDR facilitate
commmunication with the memory.

MAR (Memory Address Register) hold the address of the location to be accessed and
MDE. (Memory Data Fegister) contains data written into or read out of the addressed
location

If some devices require wrgent servicing then thev raise the mferrupt signal
mterrupting the normal execution of the current program The processor provides the
requested service by executing the appropriate intermipt service routine.

Assembler Directives

The assembly language allows the programmer to specify other information needed to
translate the source program to object program. Suppose the name SUM is used to represent

the value 200. This fact may be conveyed to the assembler program through a statement such
as

SUM EQU 200

This statement does not denote the instruction that will be executed when the object
program is run. It informs the assembler that the name SUM should be replaced by the value
200 wherever it appears in the program. Such statements are assembler directives
(or commands) are used by the assembler when it translates the source program in to a object
program.

ORIGIN is a directive that tells the assembler program where in the memory to place the

data block.
DATAWORD directive is used to inform the assembler to place the data in the address.

RESERVE directive declares a memory block and does not cause any data to be loaded in
these locations.

ORIGIN directive specifies that the instructions of an object program are to be loaded in the
memory starting at an address.

Basic Input/Output Operations

Consider a task that reads in a character input from a keyboard and produces a
character output on a display. A simple way of performing such tasks is fo use methods
kmown as program-conirolled I'0. The difference in speed between the processor and I'O
devices creates the need for mechanisms to synchronize the transfer of data between them.

Consider the problem of moving a character code from the keyboard to the processor.
Striking a key store the corresponding character code m an 8-bit buffer register associated
with the keyvboard. Let us call this register DATAIN as shown in Fig 2.3. To inform the
processor that a valid character 15 in DATATN, a status control flag, SIN, is set to 1. A
program monitor SIN. and when 5IN is set to 1. the processor reads the contents of DATATN.
When the character is transferred to processor, SIN is automatically cleared to 0. If the
second character is entered at the keyboard, SIN is again sef to 1 and the process repeats.

Bus

F 3 Fy F 3
L 4 4
DATAIN DATAQUT
Processor
SIN SouUT
Keyboard Display

Fig 2.3: Bus connection for processor, keyboard and display

An analogous process takes place when the characters are transferred from the
processor to display. A buffer register. DATAOUT and a status control register SOUT are
used for this transfer. When SOUT equals 1. the display is ready to receive a character. Under
program control, the processor monitors SOUT and when SOUT is set to 1. the processor
transfers a character code to DATAOUT. The transfer of character to DATAOUT clears
SOUT to 0, when the display is ready to receive a second character; SOUT 1is set again to 1.
The buffer registers DATAIN and DATAOQUT and the status flags SIN and SOUT are part of

circuitry known as device interface.

The processor can monifor the kevboard status flag SIN and transfer a character from
DATATN to register B! By the following sequence of operations:

READWAIT Branch to EEADWAIT if SIN=0
Imput from DATATN to K1

The first instruction tests the status flag and the second performs the branch. The
processor monitors the status flag by executing a short waif loop and proceeds to transfer the
mput data when SIN s set to 1 as a result of key being struck. The input operation resets 5IN
to 0. The sequence of operations are used for transferring the output to display are

WERITEWAIT Branch to WRITEWAIT if SOUT=0
Output from R1 to DATAOUT

Many computers use an argument called memory mapped I'O in which some memory
address values are used to refer to the peripheral device buffer registers such as DATAIN and
DATAOUT. The kevboard character buffer DATATN can be transferred to register R1 in the
processor by the instruction

MoveByte DATAIN, K1
Similarly the contents of B1 can be transferred to DATAQUT by the instruction
MoveByte R1, DATAQUT

Subroutines

It is often necessary to perform a particular subtask many times on different data
values. Such subtask is called subroutine. When a program branches to a subroutine we call
that it is calling a subroutine. The instruction that performs this branch operation is called a
Call mnstruction. The subroutine 15 said to refwrm to program that called it by executing a
Return instruction. The location where the calling program resummes execution is the location
pointed by the updated PC while the Call instruction being executed. Hence the contents of
the PC mmst be saved by the Call instruction to enable correct refurn to the calling program.
This way in which the computer makes it possible to call and retum from subroutines is
referred to as subroutine linkage method.

The Call instruction is a special branch instruction that performs the following
operafions:
1. Store the contents of PC in the link register.
2. Branch to the target address specified by the instruction.

The Retum instruction is a special branch instruction that performs the operation:
Branch to the address confained in the link register.

Fig 2.6 illustrates this procedure.

Memory Calling program Memory Subroutine SUB

location location

L]

L]

L]
200 Call SUB —_—— 1000 First instruction
204 next instmoction «——

Retumn

Shift and Rotate Instructions

There are applications that require bits of an operand to be shifted to the right or left
some specified number of bit positions. For general operands we use a logical shift. For a
number we vse an arithmetic shift which preserves the sign of the number.

Logical Shifts

Two logical shift instructions are needed. one for shifting left (LSuftl)) and another
for shifting night (LShiftR). These instructions shift an operand over a number of bit positions
specified in a count operand contained in the instruction. The general form of logical left shift
mstruction is

LShiftl. count, dst

The count operand may be given as an immediate operand or if may be confained in the
processor register. Vacated positions are filled with zeros, and the bits shifted out are passed
through the Carry flag C. and then dropped. Involving the C flag in shifts is useful in
arithmetic operations on large numbers that occupy more than one word. Fig 2.10 illustrates
all the shift operations.

+— C |+ RO — 0
before- | © 011 1 0. D1 1
after 1 11 0 D 1 1 0 0

(a) Logical shift Left LSmil 2, RO

before: 01110. 0 1 1 0
after- o001 11 0. 0 0
(b) Logical shift right LShifiR #2. RO

> RO o C |—»
before- | 1001 1. . . . L L. 0 1 0 0
e |11100 1 1. . . 0 0

(c) Anthmetic shift right ASmftR #2, RO

Fig 2.10: Logical and arithmetic shift instructions

Eotate Operations

To preserve all the bits, a set of rotate can be used. They move the bits that are shifted
out of one end of the operand back in to the other end. Two versions of both left and right
rotate instructions are provided. In one version, bits are of the operand are simply rotated. In
the other version, the rotation includes the C flag. Figure 2.11 shows the left and right rotate
operations with and without C flag being include in the rofation. Note that when C flag 15 not
mcluded in the rotation, it still retains the last bit shifted out of the end of the register.

— C |= RO +
before: [, 01110 0o 1 1
after- | 1 110 1 1 0 1

(a) Fotate left without carry RotateL #2, RO

C [RO -+

before: | 011 10 001 1
after: | 1 110 o 1 1 o 0

(b) Rotate left with carry

EotateLC #2, RO

before:

after:

Y

(c) Rotate nght without carry

RO o I e
0111 0. D 1 1 4]
1101 1 1 0. 0 1
EotateR. #2. RO

before:

after:

Y

(d) Rotate nght with carry

RO * C
0111 0. o1 0
1001 11 0. 1

EotateRC #2, RO

Fig 2.11: Rotate instructions

Address lines

Bus

Diata lines

Control lines

Address
Decoder

¥

v

Control Circuits

Data & Status
Registers

Input Device

Fig 2: T'O interface of an input device

Fig 2 illustrates the hardware required to connect the I'O device to the bus. The address
decoder enables the device to recognize its address when its address appears on the address
lines. The data register holds the data being transferred to or from the processor. The status
register contains the information relevant to the operation of I'O device. Both status and data
registers are connected to the data bus and assigned unique addresses.

The address decoder, data & status registers and the confrol circuitry required to
coordinate 'O transfers constitutes the device interface circuit.

