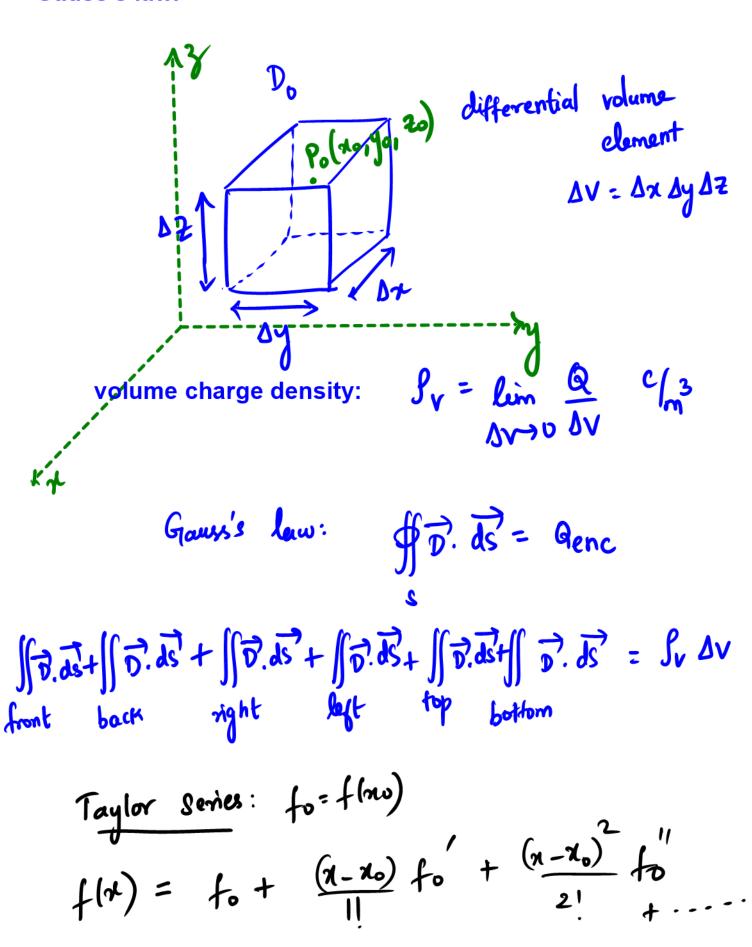
CMR INSTITUTE OF TECHNOLOGY



Internal Assesment Test-II									
Sub:	Electromagnetic Waves						Code:	21EC54	
Date:	30/01/2024	Duration:	90 mins	Max Marks:	50	Sem:	5th	Branch:	ECE (A,B,C,D)
Answer any FIVE FULL Questions									

	•	ODE		DT
				\mathbf{BE}
		Marks	CO	RBT
1.	Derive Maxwell's equation of electrostatics $\nabla \cdot D = \rho_V$.	[10]	CO2	L2
2. a)	Calculate electric field intensity because of infinite line charge using Gauss's	[05]	CO2	L2
	law.			
2. b)	Calculate divergence of the given field.	[05]	CO2	L3
	D = $1/z^2[10xyz \mathbf{a_x} + 5x^2z \mathbf{a_y} + (2z^3 - 5x^2y)\mathbf{a_z}] \text{ C/m}^2$ at point P(2,3,5).			
	$\mathbf{D} = 5r^2 \mathbf{a_r mC/m^2} \text{at } r = 0.06m,$			
3. a)	Derive an expression for the work done in moving a point charge Q in the	[05]	CO3	L2
	presence of an electric field E .			
3. b)	Given $V = \frac{\cos 2\phi}{\sin \theta}$ in free space. Find the volume charge density at the point $\Delta(0.5, 0.5)$	[05]	CO3	L3
	Given $V = \frac{r}{\rho}$ in free space. Find the volume charge density at the point A(0.5,			
	60°, 1).			

4.	Evaluate both sides of the divergence theorem for the field	[10]	CO2	L3
	$\mathbf{D} = 4xy \mathbf{a_x} + 2(x^2 + z^2)\mathbf{a_y} + 4yz \mathbf{a_z}$ C/m ² and the cube formed by the planes $x = 0$			
	and 2, $y = 0$ and 3, and $z = 0$ and 5.			
5. a)	Derive the expression for capacitance of coaxial cable using Laplace's equation.	[08]	CO3	L2
	Consider the radius of the inner conductor 'a' and outer conductor 'b'. Potential at			
	radius 'a' is maintained at V ₀ and the outside surface is grounded.			
5. b)	Verify if the given field satisfies Laplace's equation: $V = 2x^2y-5z V$.	[02]	CO3	L3
6. a)	State and prove the Uniqueness theorem.	[06]	CO3	L2
6. b)	If the potential field $V = 3x^2+2y^2+2z^3$ volts find V and E at point P (-4,5,4).	[04]	CO3	L3
7. a)	Derive an expression of differential force between differential current elements.	[06]	CO4	L2
7. b)	Discuss the force on a differential current element when placed in a magnetic field	[04]	CO4	L2
	and also obtain the expression for force.			

Application of Gauss's law to differential volume element: Derive Maxwell's First Equation of electrostatics from Gauss's law.

$$\iint_{\text{front}} + \iint_{\text{back}} \vec{D} \cdot \vec{ds} = \frac{\partial D_x}{\partial x} \Delta x \Delta y \Delta z$$

If
$$+ \iint \vec{D} \cdot \vec{ds} = \partial Dy \Delta y \Delta z$$

Let right

$$\iint_{\text{top}} + \iint_{\text{bottom}} \overrightarrow{D} \cdot \overrightarrow{dS} = \frac{\partial}{\partial z} \int_{\mathbb{R}^2} \Delta x \, dy \, dz$$

$$\iint_{S} ds = \left[\frac{\partial D_{x} + \partial D_{y} + \partial D_{z}}{\partial y} + \frac{\partial D_{z}}{\partial z}\right] \Delta x \Delta y \Delta z$$

$$\iint_{S} ds = \left[\frac{\partial D_{x} + \partial D_{y} + \partial D_{z}}{\partial y} + \frac{\partial D_{z}}{\partial z}\right] \Delta x \Delta y \Delta z$$

$$\left(\frac{\partial D_{x}}{\partial x} + \frac{\partial D_{y}}{\partial y} + \frac{\partial D_{z}}{\partial z}\right) A = \int_{V} A V$$

Differential form of Gauss's law (or) Maxwell's first equation of electrostatics.

The divergence of the vector flux density A' is the outflow of flux from a small closed surface per unit volume as the volume shrinks to zero.

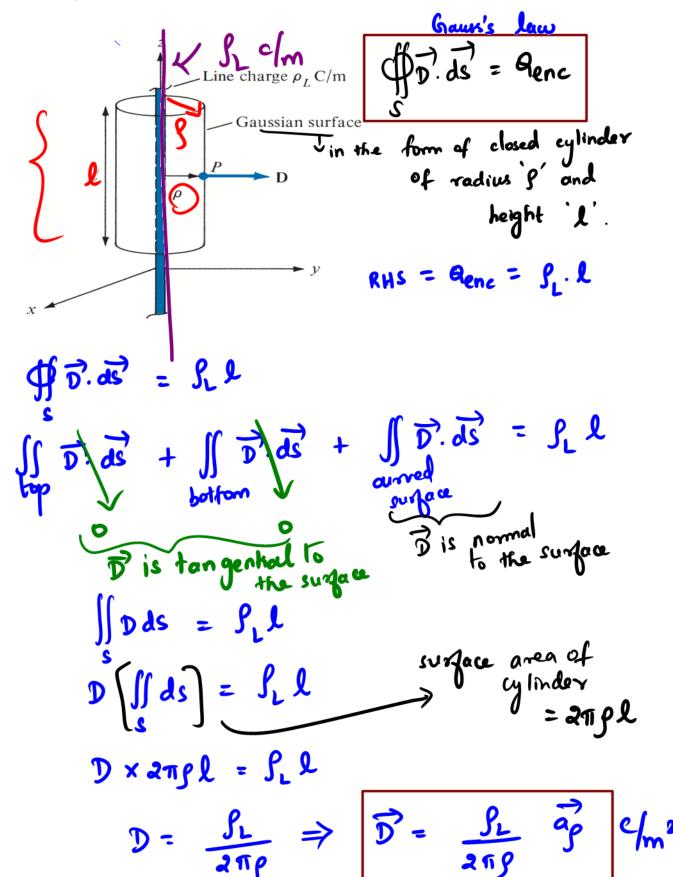
Divergence of
$$\mathbf{A} = \text{div } \mathbf{A} = \lim_{\Delta \nu \to 0} \frac{\oint_{S} \mathbf{A} \cdot d\mathbf{S}}{\Delta \nu}$$

Divergence of
$$=$$
 div $D = \lim_{S \to 0} (f) = \lim_$

$$\operatorname{div} \overrightarrow{D} = \lim_{\Delta V \to 0} \frac{\operatorname{Qenc}}{\Delta V} = \int_{V}$$

Gauss's Divergence Theorem:

Gauss's Divergence Theorem:


Gauss's
$$law \Rightarrow fD.ds = Genc$$

$$fD.ds = flow for dv$$

$$w.k.l. fv = V.D$$

Gauss's Divergence Theorem:

Intinite line charge & cfm

Electric field intensity,

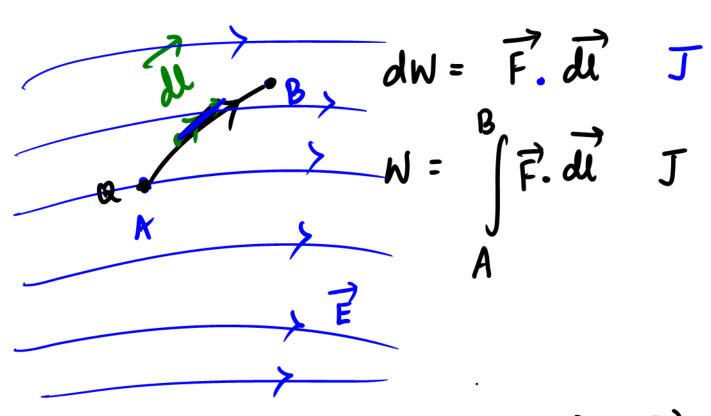
2)b)

Find
$$\nabla \cdot D$$
.

i) $\vec{D} = \frac{1}{e^2}$ (so my $z = ax^2 + 5x^2z = ay^2 + (az^2 - 5x^2y) = a_z^2$) (so $z = ax^2 + 5x^2z = ay^2 + (az^2 - 5x^2y) = a_z^2$).

$$\vec{\nabla} \cdot \vec{D} = \frac{8}{3x} \left[\frac{10 \times 42}{2^{12}} \right] + \frac{3}{3y} \left[\frac{5x^{2}z}{2^{2}} \right] + \frac{3}{3z} \left[\frac{3z^{3} - 5x^{2}y}{2^{2}} \right]$$

$$= \frac{104}{5} + 0 + 3 - 24 - 3$$

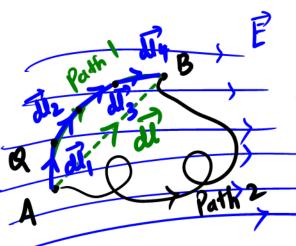

$$\frac{1}{7} \cdot \frac{1}{5} = \frac{10y}{2} + 2 + \frac{10x^2y}{2^3}$$

$$\vec{\nabla} \cdot \vec{D}$$
 = $\frac{10x^3}{5} + 2 + \frac{10x}{5} + 2x + \frac{10x}{5} + 2x = 6 + 2x + \frac{24}{25} = 8.96 \text{ c/m}^3$

21b1

$$= \frac{1}{r^2} \frac{\partial}{\partial r} (Sr^4) m$$

Energy expended in moving a point charge in an electric field - (Work Done)


Force on the point charge in the electric field, $\overrightarrow{F} : Q \overrightarrow{E}$

Force applied to move the charge against electric field,

Fapplied = -QENork done $dW = fapplied \cdot dU$ $dW = -QE \cdot dU$ $W = -QE \cdot dU$

The line integral:

work done around a closed path is zero
$$= -\alpha \oint_{L} \vec{E} \cdot d\vec{l} = 0$$

1) Let 1= cased in free space find the volume charge density at point 3)b) A(P=0.5, p=60, z=1)

$$\vec{D} = \vec{E} \vec{D}$$

$$\nabla \cdot \vec{D} = \vec{P} \vec{V}$$

$$\vec{\nabla} \vec{V} = - \vec{P} \vec{V}$$

$$\frac{\partial y}{\partial t} = -\mathcal{E}_{0} \left[\begin{array}{c} \nabla^{2} y \\ \partial y \end{array} \right] \\
= -\mathcal{E}_{0} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \frac{\partial V}{\partial p} \right) + \frac{1}{P^{2}} \frac{\partial^{2} y}{\partial \phi^{2}} + \frac{\partial^{2} V}{\partial z^{2}} \right] \\
= -\frac{10^{9}}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \frac{\partial}{\partial p} \left(\frac{\cos 2\phi}{P} \right) + \frac{1}{P^{2}} \frac{\partial^{2} \left(\cos 2\phi}{\partial \phi^{2}} \right) + o \right] \\
= -\frac{10^{9}}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + \frac{1}{P^{2}} \left(\frac{\partial}{\partial \phi} \left[-\sin 2\phi \right] \frac{\partial}{\partial \phi} \right) + o \right] \\
= -\frac{10^{9}}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + \frac{1}{P^{2}} \left(\frac{\partial}{\partial \phi} \left[-\sin 2\phi \right] \frac{\partial}{\partial \phi} \right) + o \right] \\
= -\frac{9}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + \frac{1}{P^{2}} \left(\frac{\partial}{\partial \phi} \left[-\sin 2\phi \right] \frac{\partial}{\partial \phi} \right) + o \right] \\
= -\frac{9}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + \frac{1}{P^{2}} \left(\frac{\partial}{\partial \phi} \left[-\sin 2\phi \right] \frac{\partial}{\partial \phi} \right) + o \right] \\
= -\frac{9}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + \frac{1}{P^{2}} \left(-\sin 2\phi \right) + o \right] \\
= -\frac{9}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + \frac{1}{P^{2}} \left(-\sin 2\phi \right) + o \right] \\
= -\frac{9}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + \frac{1}{P^{2}} \left(-\sin 2\phi \right) + o \right] \\
= -\frac{9}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + \frac{1}{P^{2}} \left(-\sin 2\phi \right) + o \right] \\
= -\frac{9}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + \frac{1}{P^{2}} \left(-\sin 2\phi \right) + o \right] \\
= -\frac{9}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P \right) \cdot \cos 2\phi + o \right] \\
= -\frac{1}{36\pi} \left[\begin{array}{c} \frac{\partial}{\partial p} \left(P$$

Ans: - 106 pc/m3

$$= -\frac{10^{-9}}{3611} \left[\frac{1}{p}, \cos 2 \phi \left(\frac{1}{p^2} \right) - \frac{4}{p^3} \cos 2 \phi \right]$$

$$= -\frac{10^{-9}}{36\pi} \cdot 1 \left[\cos 2\phi - 4\cos 2\phi \right]$$

$$= \frac{3 \cos 2\phi}{\rho^3} \times \frac{10^{-9}}{36\pi} \qquad \left(\begin{array}{c} \rho = 0.5 \\ \phi = 60 \end{array}\right)$$

$$+ \int \int -(2(x^2+z^2)) dx dz \Big|_{y=0} + \int \int 2(x^2+z^2) dx dz \Big|_{y=3}$$

$$+\int\int_{-2}^{2} (x^2+2^2) dx dz$$

$$Q_{anc} = \int \int_{4}^{3} 4 x^{2} y \, dy \, dz + \int_{5}^{2} \int_{4x}^{2} 5 y \, dx \, dy$$

$$= \int_{4x}^{3} 4 x^{2} y \, dy \, dz + \int_{5}^{3} \int_{4x}^{2} 5 y \, dx \, dy$$

$$= 8 \left[\frac{y^2}{2} \right]^3 \left[\frac{1}{2} \right]^5 + 2 b \left[\frac{y^2}{2} \right]^3 \left[x \right]^2$$

$$\vec{\nabla} \cdot \vec{D} = \frac{\partial}{\partial x} (4xy) + \frac{\partial}{\partial y} (2(x^2+2^2)) + \frac{\partial}{\partial z} (4y^2)$$

$$\overrightarrow{\nabla}.\overrightarrow{D} = 8y C/m^3$$

RHS =
$$\int_{1}^{3} \int_{1}^{3} dy dx dy dz = 8[y^{2}]^{3}[x]^{2}[z]^{3}$$

$$\nabla^2 v = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial v}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 v}{\partial \phi^2} + \frac{\partial^2 v}{\partial z^2} = 0 \quad \text{Laplace's eqn.}$$

$$V(\rho)$$

$$abla^2 V = \frac{1}{g} \frac{d}{dg} \left(g \frac{dv}{dg} \right) = 0$$

$$\frac{d}{d\rho}\left(\rho\frac{dv}{d\rho}\right)=0$$

Integrating w.r.t.p =>
$$\int \frac{d}{dp} \left(p \frac{dv}{dp} \right) dp = \int o dp$$

Integrating
$$\omega \cdot r \cdot t \cdot p = \int \frac{dv}{dp} dp = \int \frac{c_1}{p} dp$$

$$-V_0 = C_1 \ln \alpha - C_1 \ln \alpha$$

$$C_{2} = -C_{1} \ln b$$

$$- V_{0} = C_{1} \ln \left(\frac{b}{a} \right)$$

$$V_{0}$$

$$c_a = \frac{V_0 \ln b}{\ln (b/a)}$$

$$c_1 = \frac{V_0 \ln b}{\ln (b/a)}$$

$$V(g) = -\frac{V_0}{\ln(b/a)} \ln g + \frac{V_0}{\ln(b/a)} \ln b$$

a)
$$\vec{E} = -\vec{\nabla} v = -\left[\frac{\partial v}{\partial \rho}\hat{a}_{\rho} + \frac{1}{\rho}\frac{\partial v}{\partial \rho}\hat{a}_{\rho} + \frac{\partial v}{\partial z}\hat{a}_{\rho}^{2}\right]$$

$$z - \left[\frac{-V_0}{\ln(b/a)} \int_{\beta} \hat{\alpha} \hat{\beta}\right]$$

$$\vec{E} = \frac{V_0}{\rho \ln(b/a)} \hat{a}_{\rho} V_m$$

3)
$$\vec{D} = \mathcal{E}_0 \mathcal{E}_{\gamma} \vec{E} = \mathcal{E}_0 \mathcal{E}_{\gamma} V_0 \hat{q} \hat{q} \mathcal{E}_{m2}$$

$$g \ln(b|a) \hat{q}$$

4)
$$Q = \iint \overrightarrow{D} . d\overrightarrow{s} = \iint \underbrace{\epsilon_0 \epsilon_{\gamma} V_0}_{S} \widehat{q_0} . d\overrightarrow{s}$$

$$0 < z < l$$

$$0 < \phi < \lambda \pi$$

$$\int ds = \int \rho d\phi dz$$

= 277

5)
$$C = \frac{|a|}{Vd} = \frac{2\pi \epsilon_0 \epsilon_v \ell_0}{\ln(bl_0)} = 2\pi \epsilon_0 \epsilon_v \ell$$

$$\frac{1}{\ln(bl_0)} = 2\pi \epsilon_0 \epsilon_v \ell_0$$

$$\frac{1}{\ln(bl_0)} = 2\pi \epsilon_0 \epsilon_v \ell_0$$

Laplace equation:
$$\forall v = 0$$

$$\nabla^{2}v = \frac{\partial^{2}v}{\partial x^{2}} + \frac{\partial^{2}v}{\partial y^{2}} + \frac{\partial^{2}v}{\partial z^{2}}$$

$$= \frac{\partial}{\partial x} \cdot (4xy) + \frac{\partial}{\partial y} (2x^{2}) + \frac{\partial}{\partial z} (-5)$$

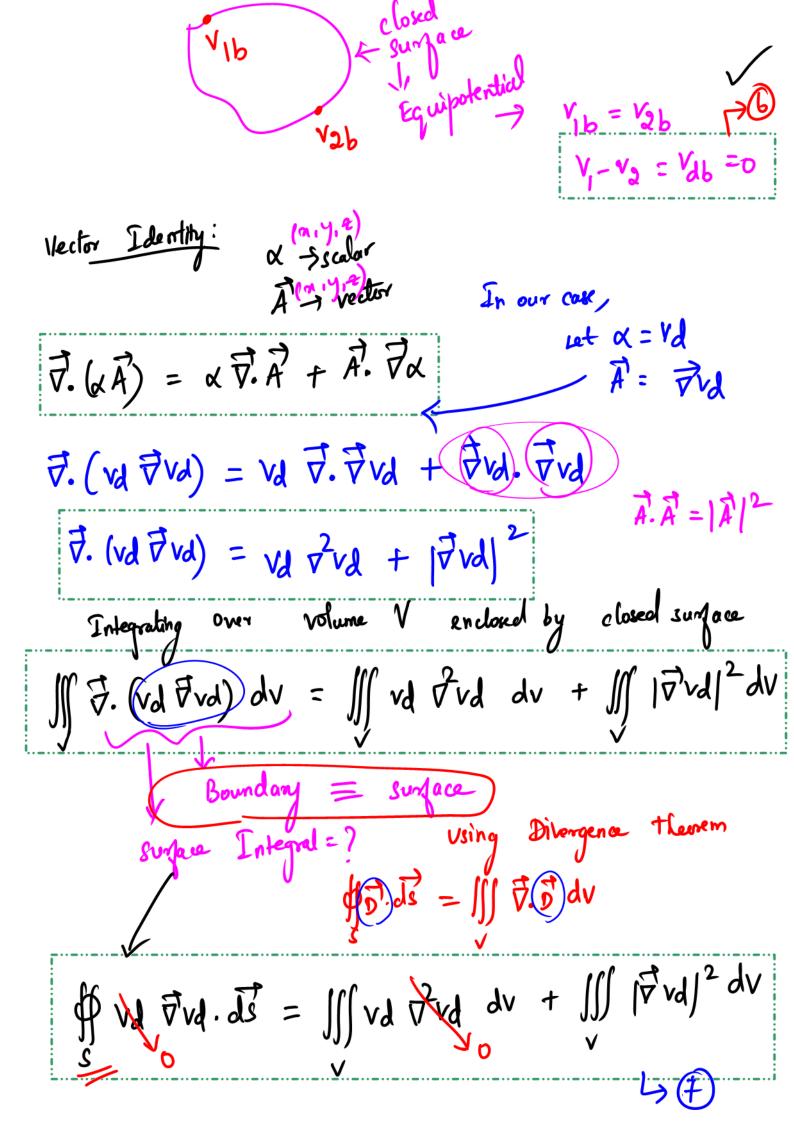
51ate and Prove Uniqueness theorem: UNIQUENESS THEOREM

This is the uniqueness theorem: If a solution to Laplace's equation can be found that satisfies the boundary conditions, then the solution is unique.

The theorem applies to any solution of Poisson's or Laplace's equation in a given region or closed surface.

Proof:

The theorem is proved by contradiction.


We assume that there are two solutions V1 and V2 of Laplace's equation both of which satisfy the prescribed boundary conditions.

Case (i) Poissons Eq. (as (ii) Laplaces Equation

$$\frac{1}{2}v_1 = -\frac{9}{2}v_2 = 0$$

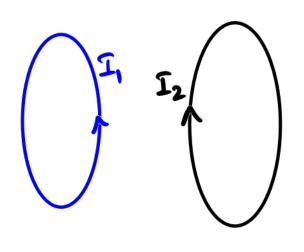
$$\frac{1}{2}v_2 = -\frac{9}{2}v_3 = 0$$

$$\frac{1}{2}v_3 =$$

Apply
$$5$$
 26 in 7
 $\sqrt[3]{V_0} = 0$
 $\sqrt[3]{V_0} = 0$

6b)
$$V = 3x^{2} + 2y^{2} + 2z^{3}$$

$$P(-4,5,4)$$


$$V \text{ at } P = 3(-4)^{2} + 2(5)^{2} + 2(4)^{3}$$

$$V \text{ at } P = 226 \text{ V}$$

$$\overrightarrow{P} = -\overrightarrow{\nabla} v = -\left[\frac{\partial V}{\partial x} a_{x}^{2} + \frac{\partial V}{\partial y} a_{y}^{2} + \frac{\partial V}{\partial z} a_{z}^{2}\right]$$

$$\overrightarrow{P} = -\int 6x a_{x}^{2} + 4y a_{y}^{2} + 6z^{2} a_{z}^{2} \text{ V/m}$$

Force between differential current elements:

Magnetic Flux density due to differential current element:
$$\begin{pmatrix}
Biot - Savart Jaw
\end{pmatrix}$$

$$\overrightarrow{AB} = \begin{matrix}
\mu_0 \\
4\pi
\end{matrix}$$

$$\overrightarrow{R} = \begin{matrix}
\overline{R} \\
\overline{R} \end{matrix}$$

$$\overrightarrow{AR} = \begin{matrix}
\overline{R} \\
\overline{R} \end{matrix}$$

$$\overrightarrow{R} = \begin{matrix}
\overline{R} \\
\overline{R} \end{matrix}$$

$$\overrightarrow{R} = \begin{matrix}
\overline{R} \\
\overline{R} \end{matrix}$$

Differential amount of force due to differential current element:

Magnetic flux density due to current element 1

$$d\vec{B}_{1} = \frac{\mu_{0}}{4\pi} \frac{\vec{I}_{1} d\vec{I}_{1} \times \vec{R}_{1}}{|\vec{R}_{1}|^{3}}$$

Differential amount of differential force on current element 1,

Magnetic flux density due to current element 2

$$d\vec{B}_{2} = \frac{\mu_{0}}{4\pi} \frac{I_{2}d\vec{l}_{2} \times \vec{R}_{2}}{|\vec{R}_{2}|^{3}}$$

$$d(d\vec{F_1}) = \vec{I_1} d\vec{I_1} \times 40^{12} \vec{I_2} d\vec{I_2} \times \vec{R_2}$$

$$4\pi \quad |\vec{R_2}|^3$$

Total force
$$F_1 = \beta I_1 dI_1 \times \mu_0 \beta I_2 dI_2 \times R_2$$

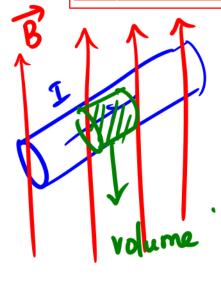
on current, $F_1 = \beta I_1 dI_1 \times \mu_0 \beta I_2 dI_2 \times R_2$
element $\beta I_1 dI_2 \times \beta I_3 dI_4 \times \mu_0$

Differential amount of differential force on current element 2,

$$d(d\vec{F_2}) = \frac{1}{2}d\vec{Q}_2 \times d\vec{B}_1$$

$$d(d\vec{F_2}) = \frac{1}{2}d\vec{Q}_2 \times \mu_0 = \frac{1}{4\pi}\frac{d\vec{Q}_1 \times \vec{R}_1}{|\vec{R}_1|^3}$$

Total force on current dement 2) F2 =
$$\int I_2 dI_2 \times \mu_0 \int I_1 dI_1 \times R_1$$


L2

L1

[Otal force on current dement 2) F2 = $\int I_2 dI_2 \times \mu_0 \int I_1 dI_1 \times R_1$

L1

[IT] | 3

ferential force
$$dF = JdV \times B$$

on volume

cument

$$f_{dv} = \vec{k}_{ds} = \vec{L}\vec{u}$$

Differential force on sheet current,
$$dF = K dS \times B$$

Differential force on line current,
$$dF = IdI \times B$$

Force on a conductor;

l-length of the conductor

$$\overrightarrow{F} = \phi_{1} \overrightarrow{u} \times \overrightarrow{B}$$

Tallal = | Tallal sino

Magnitude of force

$$F = (F') = \int I dB \sin \theta$$

= IB sint & dl