| Internal Assessment Test 3 – March 2024 | | | | | | | | | | | |---|-----------------------|-----------|------------|------------|-----------|----------|--------------|-----|-----|--| | Sub: | Sub: Network Analysis | | | | Sub Code: | BEC304 | Branch: | ECE | | | | Date: | 06/03/2024 | Duration: | 90 Minutes | Max Marks: | 50 | Sem/Sec: | 3/A, B, C, D | | OBE | | | Answer Any Five questions | | | | | | MARKS | СО | RBT | | | | Define Q factor, selectivity and band width. Prove that for a resonant circuit $f0=\sqrt{f1f2}$, where $f1$ and $f2$ are two half power frequencies. | [10] | CO5 | L | |---|------|-----|---| | g-factor (Quality factor) as to sulve at production 3 | | | | | · Spacken is also known as figure of morit. | | | | | · In resonance circuit there are two storage | | | | | elements i.e inductor (L) and capacitor (C). | | | | | The efficiency at which these two energy storing clements stone the energy is called quality factor. | | | | | & factor is defined as | | | | | 9 = 211 Maximum energy stored porcycle: Energy dissipated porcycle | | | | | Schechiority It is defined by the equation! | | | | | selectivity = Ba fo Bandwidth = fo | | | | | At resonance | | | | | Selectivity = fo R/27L = 2750L = WoL R Tas Wo = 27 fo] | | | | | Schulivity = WoL = 9. Low schuling | | | | | Schulivity - WoL 29. Schulivity - fo BW for for R = Bo High schulings High So. | | | | | Schedivity is defined as the ability of the resonating rusonant circuit to distinguish on discriminate | | | | | tusonant circuit to distinguish on discremente | | | | | between desired and undestred frequencies. | | | | Current in the sovies RLC circuit is given by $$I = \frac{V}{\sqrt{R^2 + (\chi_L - \chi_C)^2}} - (1)$$ Also at passance cut off frequency. $$I = \frac{I_0}{\sqrt{2}}$$, where I_0 is maximum current. $$I = \frac{V}{R\sqrt{2}} - \frac{2}{2}$$ $$\frac{V}{\sqrt{R^2 + (x_L - x_C)^2}} = \frac{V}{R\sqrt{2}}$$ $$\frac{V}{\sqrt{R^2 + (x_L - x_C)^2}} = \frac{V}{R\sqrt{2}}$$ $$\frac{1}{\sqrt{R^2 + (x_L - x_C)^2}} = \frac{V}{R\sqrt{2}}$$ $$\frac{1}{\sqrt{R\sqrt{2}}} = \frac{V}{\sqrt{R\sqrt{2}}} = \frac{V}{\sqrt{R\sqrt{2}}}$$ $$\frac{1}{\sqrt{R\sqrt{2}$$ At upper out of frequency, $$f_2$$ $R_2 \omega_2 L - \frac{1}{\omega_2 c} (4)$ At lower out off frequency $-R_2 \omega_1 L - \frac{1}{\omega_1 c} (5)$ Adding (5) and (5) $\omega_2 L - \frac{1}{\omega_2 c} (4) (1 - \frac{1}{\omega_1 c} (2 + R))$ $\Rightarrow L(\omega_2 + \omega_1) - \frac{1}{c} (\frac{1}{\omega_2} (4) (1 + \frac{1}{\omega_1})) = 0$ $\Rightarrow L(\omega_2 + \omega_1) = \frac{1}{c} (\frac{1}{\omega_1} (4) (1 + \frac{1}{\omega_2}))$ $$L = \frac{1}{C} \times \frac{1}{\omega_1 \omega_2}$$ $$\Rightarrow \omega_1 \omega_2 = \frac{1}{LC}$$ $$\Rightarrow \omega_1 \omega_2 = \omega_0^2 \quad \text{[as $\omega_0^2 = L_C$]}$$ $$\Rightarrow \frac{1}{C} \times \frac{1}{$$ | | D C V 11 | F103 | 005 | T 1 | |---|--|------|-----|-----| | 4 | Express Z parameter in terms of Y and h parameters. | [10] | CO5 | L1 | | | a) Relation between Z and Y parameters | | | | | | The two defineing functions of Z parameters are | | | | | | 11 7 7 1 112 12 | | | | | | 2 11 | | | | | | 1) has delining function of | | | | | | 941 / 7 / 1/4 / | | | | | | J2 = Na, y21 V + Y22 V2 -4 | | | | | | from eqn 3 yuv = I 1 - 712 V2 | | | | | | V1 = 311 - 3112 V2 - 5 | | | | | | from eqn (9) y22V2 = I2 - y21V1 | | | | | | $V_2 = \frac{J_2}{y_{22}} - \frac{y_{21}}{y_{22}} V_1 - 6$ | | | | | | | | | | | | Substituting eqn (6) in eqn (5) $V_1 = \frac{J_1}{y_{11}} - \frac{y_{12}}{y_{11}} \left(\frac{J_2}{y_{22}} - \frac{y_{21}}{y_{22}} V_1 \right)$ | | | | | | 7 7 712 T2 + 312 721 V1 | | | | | | UP2 V1 = J1 - J11 J22 I2 + J12 J21 V1 | | | | | | | | | | $$\Rightarrow \qquad -\mathbf{I}_1 = \frac{3}{5} \left[\frac{5\mathbf{V}_2}{6} \right]$$ $$\Rightarrow \qquad \mathbf{I}_1 = \frac{-1}{2}\mathbf{V}_2$$ Hence, $$\mathbf{y}_{12} = \frac{-\mathbf{I}_1}{\mathbf{V}_2} \Big|_{\mathbf{V}_1 = 0} = \frac{-1}{2}\mathbf{S}$$ Therefore, the equations that describe the two-port network are $$I_1 = \frac{3}{2}V_1 - \frac{1}{2}V_2 \qquad (7.3)$$ $$I_2 = -\frac{1}{2}V_1 + \frac{5}{6}V_2$$ (7.4) Putting the above equations (7.3) and (7.4) in matrix form, we get $$\begin{bmatrix} \frac{3}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{5}{6} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$$ Referring to Fig. 7.8(c), we find that ${\bf I_1}=2A$ and ${\bf V_2}=-4{\bf I_2}$ Substituting $I_1 = 2A$ in equation (7.3), we get Figure 7.8(c) $$2 = \frac{3}{4}\mathbf{V}_1 - \frac{1}{2}\mathbf{V}_2 \qquad (7.5)$$ Multiplying equation (7.4) by -4, we get $$-4\mathbf{I}_{2} = 2\mathbf{V}_{1} - \frac{20}{6}\mathbf{V}_{2}$$ $$\Rightarrow \qquad \mathbf{V}_{2} = 2\mathbf{V}_{1} - \frac{20}{6}\mathbf{V}_{2}$$ $$\Rightarrow \qquad 0 = 2\mathbf{V}_{1} - \left(\frac{20}{6} + 1\right)\mathbf{V}_{2}$$ $$\Rightarrow \qquad 0 = \frac{-1}{2}\mathbf{V}_{1} + \frac{13}{12}\mathbf{V}_{2} \qquad (7.6)$$ Putting equations (7.5) and (7.6) in matrix form, we get $$\left[\begin{array}{cc} \frac{3}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{13}{12} \end{array}\right] \left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{V}_2 \end{array}\right] = \left[\begin{array}{c} 2 \\ 0 \end{array}\right]$$ It may be noted that the above equations are simply the nodal equations for the circuit shown in Fig. 7.8(c). Solving these equations, we get $$\mathbf{V}_2 = \frac{3}{2}\mathbf{V}$$ $\mathbf{I}_2 = \frac{-1}{4}\mathbf{V}_2 = \frac{-3}{8}\mathbf{A}$ and hence, (a) We can express mathematically, the voltage waveform shown in Fig. 5.54 as, $$v\left(t\right) = \left\{ \begin{array}{ll} 1, & 1 < t < 2 \\ 2, & 2 < t < 3 \\ 3, & 3 < t < 4 \\ 4, & 4 < t < 5 \\ 0, & \mathrm{elsewhere} \end{array} \right.$$ or $$v(t) = [u(t-1) - u(t-2)] + 2[u(t-2) - u(t-3)]$$ $+3[u(t-3) - u(t-4)] + 4[u(t-4) - u(t-5)]$ $= u(t-1) + u(t-2) + u(t-3) + u(t-4) - 4u(t-5)$ Taking the Laplace transform, we get $$V(s) = \frac{1}{s} \left[e^{-s} + e^{-2s} + e^{-3s} + e^{-4s} - 4e^{-5s} \right]$$ (b) Assuming all initial conditions to be zero, the time domian circuit shown in Fig. 5.55 gets transformed to a circuit as shown in Fig. 5.56. Figure 5.55 Time Domain Circuit Figure 5.56 Frequency Domain Circuit From Fig. 5.56, we can write $$I\left(s\right) = \frac{V(s)}{s+1}$$ $$\begin{split} &\Rightarrow I\left(s\right) = \frac{1}{s\left(s+1\right)}e^{-s} + \frac{1}{s\left(s+1\right)}e^{-2s} + \frac{1}{s\left(s+1\right)}e^{-3s} + \frac{1}{s\left(s+1\right)}e^{-4s} - \frac{4}{s\left(s+1\right)}e^{-5s} \\ &\Rightarrow I\left(s\right) = \left[\left(\frac{1}{s} - \frac{1}{s+1}\right)e^{-s} + \left(\frac{1}{s} - \frac{1}{s+1}\right)e^{-2s} + \left(\frac{1}{s} - \frac{1}{s+1}\right)e^{-3s} \right. \\ &\left. + \left(\frac{1}{s} - \frac{1}{s+1}\right)e^{-4s} - 4\left(\frac{1}{s} - \frac{1}{s+1}\right)e^{-5s} \right] \end{split}$$ Taking the inverse Laplace transform, we get $$\begin{split} i\left(t\right) &= \left[u\left(t\right) - e^{-t}u\left(t\right)\right]_{t \to t-1} + \left[u\left(t\right) - e^{-t}u\left(t\right)\right]_{t \to t-2} + \left[u\left(t\right) - e^{-t}u\left(t\right)\right]_{t \to t-3} \\ &+ \left[u\left(t\right) - e^{-t}u\left(t\right)\right]_{t \to t-4} - 4\left[u\left(t\right) - e^{-t}u\left(t\right)\right]_{t \to t-5} \\ \Rightarrow i\left(t\right) &= \left[1 - e^{-(t-1)}\right]u\left(t-1\right) + \left[1 - e^{-(t-2)}\right]u\left(t-2\right) + \left[1 - e^{-(t-3)}\right]u\left(t-3\right) \\ &+ \left[1 - e^{-(t-4)}\right]u\left(t-4\right) - 4\left[1 - e^{-(t-5)}\right]u\left(t-5\right) \end{split}$$ | 8 For the network shows | n in Fig 6., find Vo(t), t >0 ,using mesh analysis. | [10] | CO4 | L3 | |---------------------------|--|------|-----|----| | $\frac{1}{2} F$ $2u(t) A$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | The step function u(t) is defined as follows. $$u(t) = \begin{cases} 1, & t \geq 0^+\\ 0, & t \leq 0^- \end{cases}$$ Since the circuit is not energized for $t \leq 0^{-}$, there are no initial conditions in the circuit. For $t \ge 0^+$, the frequency domain equivalent circuit is shown in Fig. 5.29(b). Figure 5.29(a) Figure 5.29(b) By inspection, we find that $I_1(s) = \frac{2}{s}$ KVL clockwise for mesh 2: $$\begin{split} \frac{-4}{s} + 1 \left[I_2(s) - I_1(s) \right] + 2I_2(s) + 1 \left[I_2(s) - I_3(s) \right] &= 0 \\ \Rightarrow \frac{-4}{s} - I_1(s) + I_2(s) \left[1 + 2 + 1 \right] - I_3(s) &= 0 \end{split}$$ Substituting the value of $I_1(s)$, we get $$\frac{-4}{s} + 4I_2(s) - I_3(s) = \frac{2}{s}$$ $$4I_2(s) - I_3(s) = \frac{6}{s}$$ KVL clockwise for mesh 3: $$1[I_3(s) - I_2(s)] + sI_3(s) + 1I_3(s) = 0$$ $\rightarrow I_2(s) + I_3(s)[s + 2] = 0$ Putting the KVL equations for mesh 2 and mesh 3 in matrix form, we get $$\begin{bmatrix} 4 & -1 \\ -1 & s+2 \end{bmatrix} \begin{bmatrix} I_2(s) \\ I_3(s) \end{bmatrix} = \begin{bmatrix} \frac{6}{s} \\ 0 \end{bmatrix}$$ Solving for $I_3(s)$, using Cramer's rule, we get $$I_3(s) = \frac{1.5}{s\left(s + \frac{7}{4}\right)}$$ $$\Rightarrow V_o(s) = I_3(s) \times 1 = \frac{1.5}{s\left(s + \frac{7}{4}\right)}$$ Using partial fractions, we can write $$V_o(s) = \frac{K_1}{s} + \frac{K_2}{s + \frac{7}{4}}$$ We find that, $$K_1 = \frac{6}{7}, \text{ and } K_2 = \frac{-6}{7}$$ Hence, $$V_o(s) = \frac{6}{7} \left[\frac{1}{s} - \frac{1}{s + \frac{7}{4}} \right]$$ $$\Rightarrow \qquad v_o(t) = \frac{6}{7} \left[1 - e^{-\frac{7}{4}t} \right] u(t)$$ | 9 | A series RLC circuit has a resistance of 10Ω , an inductance of 0.3H and a capacitance of 100μ F. The applied voltage is 230 V. Find i) Resonant Frequency, ii) Quality Factor, iii) Lower and upper cut off frequencies, iv) Band width, v) current at resonance, vi) currents at $f1$ and | [10] | CO5 | L3 | |---|--|------|-----|----| | | f2, vii) voltage across inductance at resonance. | | | | | | | | | |