

Internal Assessment Test 3 – March 2024										
Sub:	Sub: Network Analysis				Sub Code:	BEC304	Branch:	ECE		
Date:	06/03/2024	Duration:	90 Minutes	Max Marks:	50	Sem/Sec:	3/A, B, C, D		OBE	
Answer Any Five questions						MARKS	СО	RBT		

Define Q factor, selectivity and band width. Prove that for a resonant circuit $f0=\sqrt{f1f2}$, where $f1$ and $f2$ are two half power frequencies.	[10]	CO5	L
g-factor (Quality factor) as to sulve at production 3			
· Spacken is also known as figure of morit.			
· In resonance circuit there are two storage			
elements i.e inductor (L) and capacitor (C).			
The efficiency at which these two energy storing clements stone the energy is called quality factor.			
& factor is defined as			
9 = 211 Maximum energy stored porcycle: Energy dissipated porcycle			
Schechiority It is defined by the equation!			
selectivity = Ba fo Bandwidth = fo			
At resonance			
Selectivity = fo R/27L = 2750L = WoL R Tas Wo = 27 fo]			
Schulivity = WoL = 9. Low schuling			
Schulivity - WoL 29. Schulivity - fo BW for for R = Bo High schulings High So.			
Schedivity is defined as the ability of the resonating rusonant circuit to distinguish on discriminate			
tusonant circuit to distinguish on discremente			
between desired and undestred frequencies.			

Current in the sovies RLC circuit is given by
$$I = \frac{V}{\sqrt{R^2 + (\chi_L - \chi_C)^2}} - (1)$$
Also at passance cut off frequency.
$$I = \frac{I_0}{\sqrt{2}}$$
, where I_0 is maximum current.

$$I = \frac{V}{R\sqrt{2}} - \frac{2}{2}$$

$$\frac{V}{\sqrt{R^2 + (x_L - x_C)^2}} = \frac{V}{R\sqrt{2}}$$

$$\frac{V}{\sqrt{R^2 + (x_L - x_C)^2}} = \frac{V}{R\sqrt{2}}$$

$$\frac{1}{\sqrt{R^2 + (x_L - x_C)^2}} = \frac{V}{R\sqrt{2}}$$

$$\frac{1}{\sqrt{R\sqrt{2}}} = \frac{V}{\sqrt{R\sqrt{2}}} = \frac{V}{\sqrt{R\sqrt{2}}}$$

$$\frac{1}{\sqrt{R\sqrt{2}$$

At upper out of frequency,
$$f_2$$
 $R_2 \omega_2 L - \frac{1}{\omega_2 c} (4)$

At lower out off frequency

 $-R_2 \omega_1 L - \frac{1}{\omega_1 c} (5)$

Adding (5) and (5)

 $\omega_2 L - \frac{1}{\omega_2 c} (4) (1 - \frac{1}{\omega_1 c} (2 + R))$
 $\Rightarrow L(\omega_2 + \omega_1) - \frac{1}{c} (\frac{1}{\omega_2} (4) (1 + \frac{1}{\omega_1})) = 0$
 $\Rightarrow L(\omega_2 + \omega_1) = \frac{1}{c} (\frac{1}{\omega_1} (4) (1 + \frac{1}{\omega_2}))$

$$L = \frac{1}{C} \times \frac{1}{\omega_1 \omega_2}$$

$$\Rightarrow \omega_1 \omega_2 = \frac{1}{LC}$$

$$\Rightarrow \omega_1 \omega_2 = \omega_0^2 \quad \text{[as $\omega_0^2 = L_C$]}$$

$$\Rightarrow \frac{1}{C} \times \frac{1}{$$

	D C V 11	F103	005	T 1
4	Express Z parameter in terms of Y and h parameters.	[10]	CO5	L1
	a) Relation between Z and Y parameters			
	The two defineing functions of Z parameters are			
	11 7 7 1 112 12			
	2 11			
	1) has delining function of			
	941 / 7 / 1/4 /			
	J2 = Na, y21 V + Y22 V2 -4			
	from eqn 3 yuv = I 1 - 712 V2			
	V1 = 311 - 3112 V2 - 5			
	from eqn (9) y22V2 = I2 - y21V1			
	$V_2 = \frac{J_2}{y_{22}} - \frac{y_{21}}{y_{22}} V_1 - 6$			
	Substituting eqn (6) in eqn (5) $V_1 = \frac{J_1}{y_{11}} - \frac{y_{12}}{y_{11}} \left(\frac{J_2}{y_{22}} - \frac{y_{21}}{y_{22}} V_1 \right)$			
	7 7 712 T2 + 312 721 V1			
	UP2 V1 = J1 - J11 J22 I2 + J12 J21 V1			

$$\Rightarrow \qquad -\mathbf{I}_1 = \frac{3}{5} \left[\frac{5\mathbf{V}_2}{6} \right]$$

$$\Rightarrow \qquad \mathbf{I}_1 = \frac{-1}{2}\mathbf{V}_2$$
Hence,
$$\mathbf{y}_{12} = \frac{-\mathbf{I}_1}{\mathbf{V}_2} \Big|_{\mathbf{V}_1 = 0} = \frac{-1}{2}\mathbf{S}$$

Therefore, the equations that describe the two-port network are

$$I_1 = \frac{3}{2}V_1 - \frac{1}{2}V_2 \qquad (7.3)$$

$$I_2 = -\frac{1}{2}V_1 + \frac{5}{6}V_2$$
 (7.4)

Putting the above equations (7.3) and (7.4) in matrix form, we get

$$\begin{bmatrix} \frac{3}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{5}{6} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

Referring to Fig. 7.8(c), we find that ${\bf I_1}=2A$ and ${\bf V_2}=-4{\bf I_2}$

Substituting $I_1 = 2A$ in equation (7.3), we get

Figure 7.8(c)

$$2 = \frac{3}{4}\mathbf{V}_1 - \frac{1}{2}\mathbf{V}_2 \qquad (7.5)$$

Multiplying equation (7.4) by -4, we get

$$-4\mathbf{I}_{2} = 2\mathbf{V}_{1} - \frac{20}{6}\mathbf{V}_{2}$$

$$\Rightarrow \qquad \mathbf{V}_{2} = 2\mathbf{V}_{1} - \frac{20}{6}\mathbf{V}_{2}$$

$$\Rightarrow \qquad 0 = 2\mathbf{V}_{1} - \left(\frac{20}{6} + 1\right)\mathbf{V}_{2}$$

$$\Rightarrow \qquad 0 = \frac{-1}{2}\mathbf{V}_{1} + \frac{13}{12}\mathbf{V}_{2} \qquad (7.6)$$

Putting equations (7.5) and (7.6) in matrix form, we get

$$\left[\begin{array}{cc} \frac{3}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{13}{12} \end{array}\right] \left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{V}_2 \end{array}\right] = \left[\begin{array}{c} 2 \\ 0 \end{array}\right]$$

It may be noted that the above equations are simply the nodal equations for the circuit shown in Fig. 7.8(c). Solving these equations, we get

$$\mathbf{V}_2 = \frac{3}{2}\mathbf{V}$$

 $\mathbf{I}_2 = \frac{-1}{4}\mathbf{V}_2 = \frac{-3}{8}\mathbf{A}$

and hence,

(a) We can express mathematically, the voltage waveform shown in Fig. 5.54 as,

$$v\left(t\right) = \left\{ \begin{array}{ll} 1, & 1 < t < 2 \\ 2, & 2 < t < 3 \\ 3, & 3 < t < 4 \\ 4, & 4 < t < 5 \\ 0, & \mathrm{elsewhere} \end{array} \right.$$

or
$$v(t) = [u(t-1) - u(t-2)] + 2[u(t-2) - u(t-3)]$$

 $+3[u(t-3) - u(t-4)] + 4[u(t-4) - u(t-5)]$
 $= u(t-1) + u(t-2) + u(t-3) + u(t-4) - 4u(t-5)$

Taking the Laplace transform, we get

$$V(s) = \frac{1}{s} \left[e^{-s} + e^{-2s} + e^{-3s} + e^{-4s} - 4e^{-5s} \right]$$

(b) Assuming all initial conditions to be zero, the time domian circuit shown in Fig. 5.55 gets transformed to a circuit as shown in Fig. 5.56.

Figure 5.55 Time Domain Circuit Figure 5.56 Frequency Domain Circuit

From Fig. 5.56, we can write

$$I\left(s\right) = \frac{V(s)}{s+1}$$

$$\begin{split} &\Rightarrow I\left(s\right) = \frac{1}{s\left(s+1\right)}e^{-s} + \frac{1}{s\left(s+1\right)}e^{-2s} + \frac{1}{s\left(s+1\right)}e^{-3s} + \frac{1}{s\left(s+1\right)}e^{-4s} - \frac{4}{s\left(s+1\right)}e^{-5s} \\ &\Rightarrow I\left(s\right) = \left[\left(\frac{1}{s} - \frac{1}{s+1}\right)e^{-s} + \left(\frac{1}{s} - \frac{1}{s+1}\right)e^{-2s} + \left(\frac{1}{s} - \frac{1}{s+1}\right)e^{-3s} \right. \\ &\left. + \left(\frac{1}{s} - \frac{1}{s+1}\right)e^{-4s} - 4\left(\frac{1}{s} - \frac{1}{s+1}\right)e^{-5s} \right] \end{split}$$

Taking the inverse Laplace transform, we get

$$\begin{split} i\left(t\right) &= \left[u\left(t\right) - e^{-t}u\left(t\right)\right]_{t \to t-1} + \left[u\left(t\right) - e^{-t}u\left(t\right)\right]_{t \to t-2} + \left[u\left(t\right) - e^{-t}u\left(t\right)\right]_{t \to t-3} \\ &+ \left[u\left(t\right) - e^{-t}u\left(t\right)\right]_{t \to t-4} - 4\left[u\left(t\right) - e^{-t}u\left(t\right)\right]_{t \to t-5} \\ \Rightarrow i\left(t\right) &= \left[1 - e^{-(t-1)}\right]u\left(t-1\right) + \left[1 - e^{-(t-2)}\right]u\left(t-2\right) + \left[1 - e^{-(t-3)}\right]u\left(t-3\right) \\ &+ \left[1 - e^{-(t-4)}\right]u\left(t-4\right) - 4\left[1 - e^{-(t-5)}\right]u\left(t-5\right) \end{split}$$

8 For the network shows	n in Fig 6., find Vo(t), t >0 ,using mesh analysis.	[10]	CO4	L3
$\frac{1}{2} F$ $2u(t) A$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

The step function u(t) is defined as follows.

$$u(t) = \begin{cases} 1, & t \geq 0^+\\ 0, & t \leq 0^- \end{cases}$$

Since the circuit is not energized for $t \leq 0^{-}$, there are no initial conditions in the circuit. For $t \ge 0^+$, the frequency domain equivalent circuit is shown in Fig. 5.29(b).

Figure 5.29(a)

Figure 5.29(b)

By inspection, we find that $I_1(s) = \frac{2}{s}$ KVL clockwise for mesh 2:

$$\begin{split} \frac{-4}{s} + 1 \left[I_2(s) - I_1(s) \right] + 2I_2(s) + 1 \left[I_2(s) - I_3(s) \right] &= 0 \\ \Rightarrow \frac{-4}{s} - I_1(s) + I_2(s) \left[1 + 2 + 1 \right] - I_3(s) &= 0 \end{split}$$

Substituting the value of $I_1(s)$, we get

$$\frac{-4}{s} + 4I_2(s) - I_3(s) = \frac{2}{s}$$

$$4I_2(s) - I_3(s) = \frac{6}{s}$$

KVL clockwise for mesh 3:

$$1[I_3(s) - I_2(s)] + sI_3(s) + 1I_3(s) = 0$$

 $\rightarrow I_2(s) + I_3(s)[s + 2] = 0$

Putting the KVL equations for mesh 2 and mesh 3 in matrix form, we get

$$\begin{bmatrix} 4 & -1 \\ -1 & s+2 \end{bmatrix} \begin{bmatrix} I_2(s) \\ I_3(s) \end{bmatrix} = \begin{bmatrix} \frac{6}{s} \\ 0 \end{bmatrix}$$

Solving for $I_3(s)$, using Cramer's rule, we get

$$I_3(s) = \frac{1.5}{s\left(s + \frac{7}{4}\right)}$$

$$\Rightarrow V_o(s) = I_3(s) \times 1 = \frac{1.5}{s\left(s + \frac{7}{4}\right)}$$

Using partial fractions, we can write

$$V_o(s) = \frac{K_1}{s} + \frac{K_2}{s + \frac{7}{4}}$$
 We find that,
$$K_1 = \frac{6}{7}, \text{ and } K_2 = \frac{-6}{7}$$
 Hence,
$$V_o(s) = \frac{6}{7} \left[\frac{1}{s} - \frac{1}{s + \frac{7}{4}} \right]$$

$$\Rightarrow \qquad v_o(t) = \frac{6}{7} \left[1 - e^{-\frac{7}{4}t} \right] u(t)$$

9	A series RLC circuit has a resistance of 10Ω , an inductance of 0.3H and a capacitance of 100μ F. The applied voltage is 230 V. Find i) Resonant Frequency, ii) Quality Factor, iii) Lower and upper cut off frequencies, iv) Band width, v) current at resonance, vi) currents at $f1$ and	[10]	CO5	L3
	f2, vii) voltage across inductance at resonance.			