CMR Institute of Technology
Department of ECE
IAT -3 Scheme and Solution
BEC358B — MATLAB Programming

USN

Internal Assessment Test 3 — March 2024

Sub: | MATLAB Programming Sub Code: | BEC358B ‘ Branch: ‘ ECE
Date: | 06/03/2024 Duration: | 90 minutes\ Max Marks: \ 50 | Sem/Sec: 39 (A,B,C,D) OBE
ANSWER ANY FIVE FULL QUESTIONS MARKS | CO |RBT
1(i) |Create three anonymous functions corresponding to the following expressions: 6 CO3| L3
f(x) = x*—8x3+17x*> —4x— 20
gx) = x*—4x+4
h(x) = x*—4x-5
(i) Create anonymous function to evaluate f(x) — g(x)h(x) atx = 3
(ii) Create anonymous function to evaluate f(x) — g(x)h(x) atx = [123 4 5]
(iii) Create anonymous function to plot f(x) and g(g:)(x) over x € [—5,5]
1(ii) [Explain briefly about the following MATLAB commands: (i) pwd (ii) dir (iii) Is (iv) cd 4 COo3| L1
2() Solve the following set of simultaneous linear algebraic equations using appropriate 6 COo3| L3
MATLAB Symbolic computations
x+3y—z=2
x—y+z=3
3x—5y=4
2(ii) |Demonstrate briefly about reshaping matrices using MATLAB commands and suitable 4 CO4| L2
examples
3(i) [llustrate with examples the three different kinds of files for reading data in MATLAB'S 6 CO3| L2
workspace
3(ii) What are Command-Line Functions? Explain with examples 4 CO4| L1
4(i) |Write a MATLAB script file to solve the set of linear system equations: 6 CO5| L3
5x4 +2rxy; +rxz =2
3x;+6x; +(2r—1)x3 =3
2x1+(r—1x, +3rx3 =5
User =1
4(ii) |llustrate the Recursion function in MATLAB with appropriate examples 4 CO5| L2
5 List with simple statements the use of MATLAB commands break, error and return to 10 CO5| L2
control the execution of scripts and functions.
6(i) |[Compute the following MATLAB commands: 4 CO4|L3
()fix([—-2.33 2.66])
(ii)floor ([—2.33 2.66])
(iii)ceil([—2.33 2.66])
(iv)round([—2.33 2.66])

6(ii) |Apply the six relational operations in MATLAB to the operands x =[153 7] and y = 6 CO4|L3
[0 2 8 7].Comment on the results obtained
7 Write short notes on (i) M-Lint Code Analyzer (ii) Nested Functions 10 CO5| L2

(iii) for loops and while loops

1. (i)

> f=@(=x) x4 - 8*x"3 + 17* x™2 - 4*x -20

£

function handle with wvalue:

B(X)x"4-8*x"3+1T*x"2-44x-20

> g=@(x) "2 - 4%x +4

g =
function handle with wvalue:
Bix)="2-4*x+4
> h=@ (=) ®"2 - 4*x -5
En =
fFoncoction handle with waluuae:
BEix)x™"2Z—3%x—5
: >> h=@(x) x"2 — 4*x —5
(i) Anonymous function to evaluate f(x) — g(x)h(x) atx = 3
= wr—@3 (=) £ (=) — (=)} Tk (=]

- =

Foncition harndls witkh walias:

B (=) T (=) —a (=) “E (3]}

e =D

(ii)Anonymous function to evaluate f(x) — g(x)h(x) atx = [12 3 4 5]

»» f=R(x)x.™4 - 8*x.™3 + 17* X."2 - 4*x - 20

function handle with wvalue:

B(X)X."4-8%x. 3+17%x."2-4%x-20

= og = B(HR)H.TZ2 - 4%x + 4

o=

function handle with wvalue:

Bix)x."2-4%x+4

=» h=@(x)x."2 - 4"x - 5

function handle with wvalue:

Bi®)=x."2-4%x-5

= Ww=E ()L (H)—g(x) .. *hix)

function handle with wvalue:

B(x) f(x)-g(x).*h(x)

5> x=[1 2 3 4 5]

w =
1 2 3 4 5
= oW x)
ans =
-& -8 -& a 10

d f(x)

Sooneo Overx € [-5, 5]

(i) Anonymous function to plot f(x) an

»>» ¥=linspace (-5,5);
»x plot(x,E(x))
1

] Figure 1

File Edit View Insert Tools Desktop Window Help

Dode |k RROBDEL- S| 08 | aOd

25‘:“:' T T T T T T T

2000

1500

1000

500

== ou=@ (x)E(x)./g(x).*h(x)

function handle with wvalue:

Bix)£ix)./g(x).*hix)

»» plot(x,a(x))
[Figure 1

File Edit Wieww Ins=rt Tools Cresktop Wind o Help

Il eS bl i | [| 55 S0 % % 3 2 - |2 | O 2 | = &3

= 10%

1. (ii) MATLAB Commands

pwd — Print(show)working directory
Command Window

>> pwd

dns =

'C:\Users\admin'

* dir —Show the contents of the current directory

log.m
mocktest-1.ipynb
ntuser.dat.LOGl
ntuser.dat.LOGZ2
ntuser.ini

pol.m

random module.ipynb
random. txt
set.py

solvexf.m
strings.ipynb
stud.txt
student.txt
test3D.txt
test3b.txt
xydata.mat

* [s—List the contents of the directory
* cd x-change the directory to x

2. (i)Solution of simultaneous linear algebraic equations using

appropriate MATLAB Symbolic computations

Command Window

>> sSyms ¥ YV Z
>> eXxpl="=+3%y-—z-2"

expl =

'H+3Fy—z-2"
>> eXpd="=Z-y+z-3'
expd =

"X—y+z-3"
>> exXxp3="3%*x-5%y-4"
exp3d =

'3Fx-SFy-4"

»> [%,V,2)=s0lve (expl,expd, expid)

ans =

>> subs(expl) o

. (ii) Reshaping matrices using MATLAB commands

Matrices can be reshaped into a vector or any other appropriately sized
matrix:

As a vector:

All the elements of matrix A can be strung into a single-column vector
b by the command b = A (:) (matrix A is stacked in vector b column
wise)

As a differently sized matrix:

If matrix A is an m x n matrix, it can be reshaped into a p x g matrix, as

longasmxn = px q, with the command reshape (A, p, q)
For a 6 x 6 matrix A4,

reshape (A,9, 4) transforms A into a 9 x 4 matrix
reshape(A, 3,12) transforms A into a 3 x 12 matrix

. (i) Three different kinds of files for reading data in MATLAB’s workspace

Three different kinds of files for reading data into MATLAB's workspace:
Mat-file: This is MATLAB's native binary format file for saving data

Two commands - save and load make it particularly easy to save data
into and load data from these files

M-file: If you have a text file containing data, or you want to write a text
file containing data that you would eventually like to read in MATLAB,
making it an M-file may be an excellent option.

first create this file and save it as TempData .m
1 W W L)

 TempData: Script file containing data on monthly maximum temperature

S1 No = [1:12]%:

Month = char(’January’,’February’,'March’,’April’, 'May’, June’,...
*July’,’August’, 'September’, 'October’, 'November’, 'December’);

Ave_Tmax = [22 25 30 34 36 30 20 27 24 23 21 20]7;

Microsoft Excel file - data can be imported from a Microsoft Excel
spreadsheet into MATLAB

use MATLAB's import wizard, invoked by typing uiimport on the
command prompt, or by clicking on File ->Import Data

MATLAB also provides a special function xIsread for reading Excel's
spreadsheets as .xls files

Here xIsread is used to read mixed data from an Excel file TempData.xls

» This file contains column titles in the first row, numeric data in the first
and third column, and text data in the second column.

TempData.xls

SN Month Ave, Tmax
1 January 22
2 February 25
3 March 30
4 Apnil 34
5 May k1
0 Junwe 30
? July 29
8 August 27
9 September 29

10 October 23
11 Novyember 21
12 December 20

3. (ii) Command-Line Functions

(a)Inline Functions
A mathematical function, such as F(x) or F(x, y), usually requires just the values of the
independent variables for computing the value of the function. One way to evaluate
such functions is by programming them in function files. This is done by defining inline
functions-functions that are created on the command line. We can define these
functions using the built-in function inline

The svntax for creating an inline function i particularly simple:
F = inline(’ function formula')
Thus, a function such as F(z) = z° sin{z) can be coded as
F=inline(*x~2 * gin(x)")

Our inline function can only take a scalar x as an input argument. We can modify it
easily by changing the arithmetic operator to accept array argument:
F=inline (x. - 2. *sin (x) ').
Once the function is created, you can use it as a function independently (e.g., type
F (5) to evaluate the function at x = 5) or in the input argument of other functions

that can evaluate it.

(b)Anonymous Functions
Anonymous functions are functions without names, created and referred by their
handles. A function handle, created internally by MATLAB and stored in a user defined
variable, is basically the identity of the function. An anonymous function is created by
the command .

f = @{input list) mathematical ezpression
where fis the function handle. The input list can contain a single variable or several
variables separated by commas. After creating the function, you can use it with its
handle to evaluate the function or pass it as an argument to other functions.

Ezamples:
fx = @(x) x"2 - sin(x);
fx(5)
fxy = @(x,y) x"2 + y"2
fxy(2,3)
fx = @(x) x.72 - sin(x)
x=[0:.1:pi/2]; plot(x,fx(x))

creates a function f(z) = 7% —sinz,
evaluates f(r)at z =5,

creates a function f(z,y) = 22 + 1,
evaluates f(z,y) at c =2 and y = 3,
veetorizes the function f(x), and
plots f(z) over 0 to = /2.

4. (i) MATLAB script file to solve the set of linear system equations

Solution depend on the format Ax = b

A depends on the parameter r\

3

Programl.m +

1 $Program to solve Systen

2= r=1;
1= Aw [5 2% r: 3 & 2%r-1;
i - b= [2:3:5):
5= det_A = detih)
B = %= b
=> Programl
det_ & =
&4
x —
—0.0312
0.2344
l.6875

4. (ii)Recursion Function in MATLAB

5 r 7

2 r-1

6 2r-1[i%;=13]
Ir [0

* The MATLAB programming language supports recursion, i.e., a function

can call itself during its execution

vVVvy*

Y VY

Thus, recursive algorithms can be directly implemented in MATLAB
Example:

Computing the nth term in the Fibonacci (0, 1, 1, 2, 3, 5, 8...)
Label the terms asF,,F; ,F,etc...

Then the recursion relationship for generating this sequence is:
F,=F_1+ Fi_yfork>2

The seedsare F;=0and F;=F, =1

The nth term in this sequence can be computed by the following
recursive function:

The nth term in this sequence can be computed by the following
recursive function:

function Fn = fibonacci(n)

% FIBBONACI: computes nth term in the Fibonacci sequence

% written by Athay, May 15, 09, modified by RP, June 1, 09

if n==0, Fn = 0; Fn=0 for n=0
elzeif n==1 | n==2, Fn = 1; Y Fn=1, for n=1 OR n=2
else Fn = fibonacei(n-1) + fibonacei(n-2); % recursion relation

end

. The use of MATLAB commands break, error and return to control

the execution of scripts and functions

Control FIQW - Break

* The command break inside a for or while loop terminates the execution of
the loop, even if the condition for execution of the loop is true

* Examples: (Assume that the variables used in the codes below are
predefined)

L 1= exp(sqre(163));

1. for i=1:1ength(v) shile 1
if v(i) <0 Y check for negati':a v o * inpot(’Enter max. nusber of iterations ')

; . . ifneo
break % terminate loop execution beosk { tibdinata Liop dacitim
and end
iy, " . for i=l:n
a=ati); h do sonething 1= loglx); 1} do something
end end
end

* If the loops are nested then break terminates only the innermost loop

Control Flow - Error

* The command error (' message') inside a function or a script aborts the
execution, displays the error message message, and returns the control to
the keyboard

* Example:

function ¢ = crossprod(a,b);

% crossprod(a,b) calculates the cross product axb.

if nargin™=2 % if not two input arguments
error(’Sorry, need two input vectors’)

end

if length(a)==2 % begin calculations

end

Control Flow - Return

* The command return simply returns the control to the invoking function

. (i)

* Example:
function animatebar(t0,tf,x0);
% animatebar animates a bar pendulum.
éxsp('Do you want to see the phase portrait?’)
ans = input(’Enter 1 if YES, 0 if NO ’);
% see text for description
if ans==(% if the input is 0
return % exit function
else
plot(x,...) % show the phase plot
end
fix round toward 0,
Ezample: £ix([-2.33 2.66]) =[-2 12|
floor round toward =oo,
Ezample: floor([-2.33 2.66]) =[-3 2]
ceil round toward =00,
Erample: ceil([-2.33 2.66]) = [—2 3].
round round toward the nearest integer,

Ezample: round([-2.33 2.66]) =[-2 3]

m r ¥ r

6. (ii)

There are six relational operators in MATLAB:

less than
<= less than or equal
> greater than
>= greater than or equal
== equal
not equal

These --ku‘:ul]- mis result in a vector or matrix of the same size as the nl’n"l:\l‘.llﬁ.

with 1 where the relation is true and 0 where it is false.

Ecomples: fx=[1 53 7] and y=[0 2 8 7], then

E=x <y results in k= [00 1 0] because x; < y; fori = 3,

E=x <=y results in k= [00 1 1] because x; < y; fori = 3 and 4,
E=x>y results in =1 1 00| because x; > y; for i = 1 and 2,
E=x 2=y results in & =[1101] because x; = gy for 1 = 1,2, and 4,
k=x==1y% results in £ = [0001) because T; = y; for i = 4 amd
E=x "=y results in k =[11 10] because o #F yy for i = 1, 2, and 3.

7. Short notes on (i) M-Lint Code Analyzer (ii) Nested Functions

(iii)for loops and while loops

(i)M — Lint Code Analyzer

When you write a program in MATLAB, and create a script or a function, you want to make

sure that your program

e uses correct syntax for each statement,

e has proper function definition line if it is a function,

¢ uses appropriate built-in functions, and

¢ contains no unresolvable references.

MATLAB provides an assistant to help in this task. It is called the M-Lint Automatic Code

Analyzer (offers automatic corrections too). It is an excellent facility for helping in

developing error free codes. There are two basic ways in which we can use M-Lint code

analyzer:

> On fresh code as you write it: When you open a new M-file in the MATLAB editor

using File->New->Blank M- File or Function M-File from the MATLAB menu, M-Lint
code analyzer is pressed into service automatically. As you write the lines of code,
M-Lint, as a nice assistant, starts working quietly, watching over your shoulders, and
lists its objections politely and symbolically in the right-hand margin of the editor
window. There is a colored small square on the top (in the right margin) that
indicates the level of M-Lint's happiness with your code-a red-faced square indicates
error, a green-faced square is a signal to march on. Below the square, there may be
orange or red-colored lines corresponding to a particular line of code. Place your
cursor on these colored lines (or, alternatively, on the underlined items in your
code) one by one to see the message your assistant has left for you while it checked
the line. Orange lines contain advisories (warnings) but red lines must necessarily be
attended to. Many a times, fixing one error gets rid of many other warning lines too.

> On existing M-files: You can open an existing M-file in the editor and see M-Lint's
messages just the way you would on a new M-file. Alternatively, you can run M-Lint
on the whole directory and produce reports for each M-file in the directory with a
single click-go to the Current Directory pane, click on the Action icon (the little gear
icon in the menu bar of the pane) , select Reports->M- Lint Code Check Report from
the pop-up menu. You are presented with the M-Lint report for all M-files.

(ii)Nested Functions
Nested functions are functions written inside a main function, just like sub functions but with
the following important distinctions:

Each nested function must be terminated by an end statement. For example:
function [x, y] = main_fun(t, a, b)

function x = nested_funl(a,b)

end
function y = nested fun2(t)

end

end
Here, nested _fun | and nested_fun2 are nested functions inside the main function main_fun. All
nested functions share the workspace of functions in which they are nested. Thus nested_fun1l
and main_fun share their workspace variables and so do nested_fun2 and main_fun, but nest
ed_funl and nested_fun2 do not share workspace variables. This facility of sharing workspace
makes it easy for the nested functions to access each other's variables and their values without
any explicit declaration (e.g., global) or passing them in the input list.
Functions can be nested to any level; that is, nested functions can also have their own nested
functions. Of course, nested functions are not visible or accessible from outside the main
function. They can, however, be made accessible from outside by creating their explicit function
handles

(iii) For loops and while loops
For loops

A for loop is used to repeat a statement or a group of statements for a fixed number
of times. Here are two examples:

Ezample 1: for m=1:100
num = 1/(m+1)
and
Erample 2: for n=100:-2:0, k = 1/(exp(n)), end

The counter in the loop can also be given explicit increment: for i=m:k:n to
advance the counter ¢ by & each time (in the second example, n goes from 100 to 0
as 100, 98, 96, ..., etc.). You can have nested for loops, that is, for loops within

for loops. Every for, however, must be matehed with an end.

While loops

A while loop is used to execute a statement or a group of statements for an indefinite
number of times until the condition specified by while is no longer satisfied. For
example:
% let us find all powers of 2 below 10000
ve=1l, num=1; i=};
while num < 10000
v = [v; num];
i=i+1;
num = 27i;
end
v % display v

Once again, a while must have a matching end.

