

CMR Institute of Technology
Department of ECE

IAT -3 Scheme and Solution
BEC358B – MATLAB Programming

 USN

 Internal Assessment Test 3 – March 2024

Sub: MATLAB Programming Sub Code: BEC358B Branch: ECE

Date: 06/03/2024 Duration: 90 minutes Max Marks: 50 Sem/Sec: 3rd (A,B,C,D) OBE

ANSWER ANY FIVE FULL QUESTIONS MARKS CO RBT

1(i) Create three anonymous functions corresponding to the following expressions:

𝒇(𝒙) = 𝒙𝟒 − 𝟖𝒙𝟑 + 𝟏𝟕𝒙𝟐 − 𝟒𝒙 − 𝟐𝟎
𝒈(𝒙) = 𝒙𝟐 − 𝟒𝒙 + 𝟒
𝒉(𝒙) = 𝒙𝟐 − 𝟒𝒙 − 𝟓

(i) Create anonymous function to evaluate 𝒇(𝒙) − 𝒈(𝒙)𝒉(𝒙) at 𝒙 = 𝟑
(ii) Create anonymous function to evaluate 𝒇(𝒙) − 𝒈(𝒙)𝒉(𝒙) at 𝒙 = [𝟏 𝟐 𝟑 𝟒 𝟓]

 (iii) Create anonymous function to plot 𝒇(𝒙) and
𝒇(𝒙)

𝒈(𝒙)𝒉(𝒙)
 over 𝒙 ∈ [−𝟓, 𝟓]

6 CO3 L3

1(ii) Explain briefly about the following MATLAB commands: (i) pwd (ii) dir (iii) ls (iv) cd 4 CO3 L1

2(i) Solve the following set of simultaneous linear algebraic equations using appropriate
MATLAB Symbolic computations

𝒙 + 𝟑𝒚 − 𝒛 = 𝟐
𝒙 − 𝒚 + 𝒛 = 𝟑
𝟑𝒙 − 𝟓𝒚 = 𝟒

6 CO3 L3

 2(ii) Demonstrate briefly about reshaping matrices using MATLAB commands and suitable
examples

4 CO4 L2

3(i) Illustrate with examples the three different kinds of files for reading data in MATLAB’s
workspace

6 CO3 L2

3(ii) What are Command-Line Functions? Explain with examples 4 CO4 L1

4(i) Write a MATLAB script file to solve the set of linear system equations:
𝟓𝒙𝟏 + 𝟐𝒓𝒙𝟐 + 𝒓𝒙𝟑 = 𝟐

 𝟑𝒙𝟏 + 𝟔𝒙𝟐 + (𝟐𝒓 − 𝟏)𝒙𝟑 = 𝟑
𝟐𝒙𝟏 + (𝒓 − 𝟏)𝒙𝟐 + 𝟑𝒓𝒙𝟑 = 𝟓

Use 𝑟 = 1

6 CO5 L3

4(ii) Illustrate the Recursion function in MATLAB with appropriate examples 4 CO5 L2

5 List with simple statements the use of MATLAB commands 𝒃𝒓𝒆𝒂𝒌, 𝒆𝒓𝒓𝒐𝒓 and 𝒓𝒆𝒕𝒖𝒓𝒏 to
control the execution of scripts and functions.

10 CO5 L2

6(i) Compute the following MATLAB commands:
 (i)𝒇𝒊𝒙([−𝟐. 𝟑𝟑 𝟐. 𝟔𝟔])
 (ii)𝒇𝒍𝒐𝒐𝒓 ([−𝟐. 𝟑𝟑 𝟐. 𝟔𝟔])
 (iii)𝒄𝒆𝒊𝒍([−𝟐. 𝟑𝟑 𝟐. 𝟔𝟔])
 (iv)𝒓𝒐𝒖𝒏𝒅([−𝟐. 𝟑𝟑 𝟐. 𝟔𝟔])

4 CO4 L3

6(ii) Apply the six relational operations in MATLAB to the operands 𝒙 = [𝟏 𝟓 𝟑 𝟕] and 𝒚 =
[𝟎 𝟐 𝟖 𝟕].Comment on the results obtained

6 CO4 L3

7 Write short notes on (i) M-Lint Code Analyzer (ii) Nested Functions
(iii)𝒇𝒐𝒓 𝒍𝒐𝒐𝒑𝒔 𝒂𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 𝒍𝒐𝒐𝒑𝒔

 10 CO5 L2

1. (i)

(i) Anonymous function to evaluate 𝒇(𝒙) − 𝒈(𝒙)𝒉(𝒙) at 𝒙 = 𝟑

(ii)Anonymous function to evaluate 𝒇(𝒙) − 𝒈(𝒙)𝒉(𝒙) at 𝒙 = [𝟏 𝟐 𝟑 𝟒 𝟓]

(ii) Anonymous function to plot 𝒇(𝒙) and
𝒇(𝒙)

𝒈(𝒙)𝒉(𝒙)
 over 𝒙 ∈ [−𝟓, 𝟓]

1. (ii) MATLAB Commands

𝑝𝑤𝑑 – Print(show)working directory

• 𝑑𝑖𝑟 – Show the contents of the current directory

• 𝑙𝑠 – List the contents of the directory
• 𝑐𝑑 x - change the directory to x

2. (i)Solution of simultaneous linear algebraic equations using
appropriate MATLAB Symbolic computations

2. (ii) Reshaping matrices using MATLAB commands
• Matrices can be reshaped into a vector or any other appropriately sized

matrix:
 As a vector:
• All the elements of matrix 𝐴 can be strung into a single-column vector

𝑏 by the command 𝑏 = 𝐴 (:) (matrix 𝐴 is stacked in vector 𝑏 column
wise)

 As a differently sized matrix:

• If matrix 𝐴 is an 𝑚 𝑥 𝑛 matrix, it can be reshaped into a 𝑝 𝑥 𝑞 matrix, as

long as 𝑚 𝑥 𝑛 = 𝑝 𝑥 𝑞, with the command 𝒓𝒆𝒔𝒉𝒂𝒑𝒆 (𝑨 , 𝒑, 𝒒)
• For a 6 x 6 matrix 𝐴,

 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (𝐴 , 9, 4) transforms 𝐴 into a 9 x 4 matrix

 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐴, 3,12) transforms 𝐴 into a 3 x 12 matrix

3. (i) Three different kinds of files for reading data in MATLAB’s workspace

• Three different kinds of files for reading data into MATLAB's workspace:
 Mat-file: This is MATLAB's native binary format file for saving data
 Two commands - save and load make it particularly easy to save data

into and load data from these files
 M-file: If you have a text file containing data, or you want to write a text

file containing data that you would eventually like to read in MATLAB,
making it an M-file may be an excellent option.

 first create this file and save it as TempData .m

 Microsoft Excel file - data can be imported from a Microsoft Excel

spreadsheet into MATLAB
 use MATLAB's import wizard, invoked by typing uiimport on the

command prompt , or by clicking on File ->Import Data
 MATLAB also provides a special function xlsread for reading Excel's

spreadsheets as .xls files
 Here xlsread is used to read mixed data from an Excel file TempData.xls

 This file contains column titles in the first row, numeric data in the first
and third column, and text data in the second column.

3. (ii) Command-Line Functions
 (a)Inline Functions
A mathematical function, such as F(x) or F(x, y), usually requires just the values of the
independent variables for computing the value of the function. One way to evaluate
such functions is by programming them in function files. This is done by defining inline
functions-functions that are created on the command line. We can define these
functions using the built-in function inline

Our inline function can only take a scalar x as an input argument. We can modify it
easily by changing the arithmetic operator to accept array argument:
F=inline (‘x. - 2. *sin (x) ').
Once the function is created, you can use it as a function independently (e.g., type
 F (5) to evaluate the function at x = 5) or in the input argument of other functions
that can evaluate it.

(b)Anonymous Functions
Anonymous functions are functions without names, created and referred by their
handles. A function handle, created internally by MATLAB and stored in a user defined
variable, is basically the identity of the function. An anonymous function is created by
the command

where f is the function handle. The input list can contain a single variable or several
variables separated by commas. After creating the function, you can use it with its
handle to evaluate the function or pass it as an argument to other functions.

4. (i) MATLAB script file to solve the set of linear system equations

4. (ii)Recursion Function in MATLAB
• The MATLAB programming language supports recursion, i.e. , a function

can call itself during its execution

• Thus, recursive algorithms can be directly implemented in MATLAB
• Example:

 Computing the 𝑛𝑡ℎ term in the Fibonacci (0, 1, 1, 2, 3, 5, 8…)
 Label the terms as𝐹0,𝐹1,𝐹2etc…
 Then the recursion relationship for generating this sequence is:

𝐹𝑘 = 𝐹𝑘−1 + 𝐹𝑘−2 for 𝑘 > 2

 The seeds are 𝐹0 = 0 and 𝐹1= 𝐹2 = 1

 The 𝑛𝑡ℎ term in this sequence can be computed by the following
recursive function:

 The 𝑛𝑡ℎ term in this sequence can be computed by the following
recursive function:

5. The use of MATLAB commands 𝒃𝒓𝒆𝒂𝒌, 𝒆𝒓𝒓𝒐𝒓 and 𝒓𝒆𝒕𝒖𝒓𝒏 to control
the execution of scripts and functions

6. (i)

6. (ii)

7. Short notes on (i) M-Lint Code Analyzer (ii) Nested Functions
(iii)𝑓𝑜𝑟 𝑙𝑜𝑜𝑝𝑠 𝑎𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 𝑙𝑜𝑜𝑝𝑠

(i)M – Lint Code Analyzer
When you write a program in MATLAB, and create a script or a function, you want to make
sure that your program
 • uses correct syntax for each statement,
 • has proper function definition line if it is a function,
• uses appropriate built-in functions, and
• contains no unresolvable references.
MATLAB provides an assistant to help in this task. It is called the M-Lint Automatic Code
Analyzer (offers automatic corrections too). It is an excellent facility for helping in
developing error free codes. There are two basic ways in which we can use M-Lint code
analyzer:

 On fresh code as you write it: When you open a new M-file in the MATLAB editor
using File->New->Blank M- File or Function M-File from the MATLAB menu, M-Lint
code analyzer is pressed into service automatically. As you write the lines of code,
M-Lint, as a nice assistant, starts working quietly, watching over your shoulders, and
lists its objections politely and symbolically in the right-hand margin of the editor
window. There is a colored small square on the top (in the right margin) that
indicates the level of M-Lint's happiness with your code-a red-faced square indicates
error, a green-faced square is a signal to march on. Below the square, there may be
orange or red-colored lines corresponding to a particular line of code. Place your
cursor on these colored lines (or, alternatively, on the underlined items in your
code) one by one to see the message your assistant has left for you while it checked
the line. Orange lines contain advisories (warnings) but red lines must necessarily be
attended to. Many a times, fixing one error gets rid of many other warning lines too.

 On existing M-files: You can open an existing M-file in the editor and see M-Lint's
messages just the way you would on a new M-file. Alternatively, you can run M-Lint
on the whole directory and produce reports for each M-file in the directory with a
single click-go to the Current Directory pane, click on the Action icon (the little gear
icon in the menu bar of the pane) , select Reports->M- Lint Code Check Report from
the pop-up menu. You are presented with the M-Lint report for all M-files.

(ii)Nested Functions
Nested functions are functions written inside a main function, just like sub functions but with
the following important distinctions:
Each nested function must be terminated by an end statement. For example:

Here, nested _fun l and nested_fun2 are nested functions inside the main function main_fun. All
nested functions share the workspace of functions in which they are nested. Thus nested_fun1
and main_fun share their workspace variables and so do nested_fun2 and main_fun, but nest
ed_fun1 and nested_fun2 do not share workspace variables. This facility of sharing workspace
makes it easy for the nested functions to access each other's variables and their values without
any explicit declaration (e.g., global) or passing them in the input list.
Functions can be nested to any level; that is, nested functions can also have their own nested
functions. Of course, nested functions are not visible or accessible from outside the main
function. They can, however, be made accessible from outside by creating their explicit function
handles

(iii) For loops and while loops

