VTU solutions BEC306C Computer Organization and Architecture:

BEC306C

Max. Marks: 100
" Note: 1. Answer any FIVE full questions, choosing ONE full question from each module
2. M : Marks , L: Bloom’s level , C: Course outcomes.
Module - 1 M| L € |
Q.1 | a. | With a neat diagram, explain basic operatjonal concept of computer. 10| L1 | COl
b. | Explain following with an example : 06 | L1 | CO1
i) Three address instruction ii) Two-address instruction
iii) One-address instruction
c. | Explain Big Endian and Little Endian with neat diagram. 04| L1] COL1 |
OR (|
Q.2 | a. | Discuss IEEE standard for single precision and double precision floating | 08 | L1 | CO1
point numbers with example.
b. | What is system software? List functions of system software and explain | 08 | L1 | CO1
how the processor is shared between user program and os routine.
c. | Explain computer basic performance equation. 04| L1 | CO1
Module - 2
Q.3 | a. | What is an addressing mode? Explain any five types of addressing modes | 10 | L1 | CO2
with example.
b. | Write a program to add ‘n’ number using indirect addressing mode. 05| L2 | CO2
c. | Explain stack operations. 05| L2 | CO2
OR i
Q.4 | a. | What are assembler directives? Explain various assembler directives used | 08 | L2 | CO2 |
in assembly language program.
b. | Explain subroutine linkage with an example using linkage register. 06 | L2 | CO2
¢. | Explain the shift and rotate operations with example. 06 | L2 | CO2
Module — 3
Q.5 | a. | Showing register configuration in I/O Interface, Explain program controlled | 08 | L2 | CO2
input/output with program.
b. | Explain the registers involved in DMA interface. 06 | L2 | CO2
c. | What is an interrupt? Explain interrupt hardware. 06 | L2 | CO2
OR
Q.6 | a. | Explain the following method of handling interrupts from multiple devices. | 08 | L2 | CO3
i) Daisy chain method ii) Priority structure
b. | What is Bus arbitration? Explain centralized bus arbitration mechanism | 08 | L2 | CO3
with a neat diagram.
c. | Explain the concept of vectored interrupt. 04| L2 | CO3
Module — 4
Q.7 | a. | Explain internal organization of 16x8 memory chip. 08 | L2 | CO4
b. | With a neat diagram, explain working principle of magnetic disk. 06 | L2 | CO4
c. | With a neat diagram, explain virtual memory organization. 06 | L2 | CO2
OR
Q.8 | a. | Explain the internal organization of 2Mx8 DRAM chip with neat diagram. | 08 | L2 | CO3 |
b. | Explain a static RAM cell with a neat diagram. 06 | L2 | CO3
¢. | Discuss the concept of cache memory. 06| L2 | CO3

BEC306C

Module — 5

Q9 Explain with neat diagram, Single Bus organization of data path inside a | 08 | L2 | CO4
processor.
Discuss the control sequence for execution of instruction ADD (R3), R1. 06 | L2 | CO4
Describe the organization of hardwired control unit. 06 | L2 | CO4

OR

Q.10 Explain multiple bus/three bus organization with a neat diagram. 10 | L2 | COS
What is microprogrammed control? Explain its basic organization with | 10 | L2 | COS
suitable diagram and example. CMREIT LIBRARY

L0 027
DOT OS5

mARIOAL O
DANCACONE ™

* %k 3k k ¥

1. A.With aneat diagram, explain the basic operational concept of Computer

Basic Operational Concepts

To perform a given task, an appropriate program consisting of a list of instructions is stored
in the memory. Individual instructions are brought from the memory into the processor, which
executes the specified operations. Data to be used as operands are also stored in the memory. A
typical instruction may be

Add LOCA, RO

This instruction adds the operand at memory location LOCA to the operand in a register in
the processor, RO, and places the sum in the register RO. The original contents of location LOCA
are preserved whereas those of RO are overwritten. First the instruction is fetched from the memory
into the processor. Next the operand at LOCA is fetched and added to the contents of RO. Finally
the resulting sum is stored in register RO.

Transfers between memory and processor are started by sending the address of the memory
location to be accessed to the memory unit and issuing the appropriate control signals. The data is
transferred to or from the memory. The memory and processor connection is shown in Fig 1.2.

Memory

e

N NV

MAR M IR
\ / Control

PC Ro

ALU

n general purpose registers

The Instruction register (IR) holds the instruction that is currently being executed. Its
output is available to control circuits which generate the timing signals that control various
processing elements involved in executing the instruction.

The Program Counter (PC) holds the address of the next instruction to be fetched and
executed. During the execution of an instruction, the contents of the PC are updated to correspond
to the address of the next instruction to be executed. MAR and MDR facilitate communication
with the memory.

MAR (Memory Address Register) hold the address of the location to be accessed and MDR
(Memory Data Register) contains data written into or read out of the addressed location.

If some devices require urgent servicing then they raise the interrupt signal interrupting the
normal execution of the current program. The processor provides the requested service by
executing the appropriate interrupt service routine.

1.B. Explain the following with an example: 1) Three Address Instruction 2) Two
Address Instruction 3) One Address Instruction

Basic Instruction Types:

OThree-Address Instructions: There are 3-operands or three addresses (labels used to
specify the location of data) present along with the Op-code in the instruction. In these
instructions at-most only two location can be in memory

Eg: Add R1, R2, R3 R3 — R1 +R2, Here R1, R2 and R3 are the general
purpose registers (GPRs) present in the Proessor Chip.

OTwo-Address Instructions: There are 2-operands or two addresses (labels used to
specify the location of data) present along with the Op-code in the instruction. In these
instructions at-most only one location can be in memory

Eg: Add R1, R2 R2 — R1+R2, Here R1and R2 are the general
purpose registers (GPRs) present in the Proessor Chip.

[JOne-Address Instructions: There is only 1-operands or 1- address (label used to specify
the location of data) present along with the Op-code in the instruction which may be a
memory location or any internal Processor Registers (GPRS).

Here all operations encoded in the Op-code of Instruction is carried out with respect to
the data in Accumulator-register (AC) present inside the Processor with the Accumulator
register also acting as the detination register after the operation.

Eg: Add M AC — AC + [M], Here the M represents any memory
Location data specified by memory-address M
0

1.C. Explain Big Endian and Little Endian with neat diagram

Big-Endian and Little-Endian Assignments:

Big-Endian: lower byte addresses are used for storing the most significant bytes of the

word

Little-Endian: opposite ordering. lower byte addresses are used for storing the less

significant bytes of the word

Word
address Byte address
0 0 1 2
4 4 5 6

(a) Big-endian assignment

Byte address

3 2 1 0
7 6 5 4
L]
[]
L]
3 k k k

(b) Little-endian assignment

Figure 2.7. Byte and word addressing.

2.A. Discuss the IEEE standard for single precision and double precision floating point

numbers with example

The basic IEEE format is a 32-bit representation, shown in Figure 9.26a. The leftmost
bit represents the sign, §, for the number. The next 8 bits, £, represent the signed exponent
of the scale factor (with an implied base of 2), and the remaining 23 bits, M, are the

- 32 bits -
B E M |
Sign of —f 8-bi \r. y :
number: -bit signed ‘23—I:||t)
0 signifies + exponent 1n mantissa fraction
. excess-127
| signifies — representation
E'—127
Value represented = £1.M x 2
(a) Single precision
ooo101000«00101 0 ... 1]
Value represented = 1.001010 ... 0x E_E?
(b) Example of a single-precision number
- 64 bits -
hY E’ L] M
Sign J kS v R V &
11-bit excess-1023 52-bit

exponent mantissa fraction
E‘-1023
Value represented = £1.M = 2

(c) Double precision

Figure 9.26 IEEE standard floating-point formats.

fractional part of the significant bits. The full 24-bit string, B, of significant bits, called the
mantissa, always has a leading 1, with the binary point immediately to its right. Therefore,
the mantissa

B=1M=1b_1b 5...b o

has the value

VIB)=1+b_ 1 x2 " +bhax2 4+ . +bhnx2"

By convention, when the binary point is placed to the right of the first significant bit, the
number is said to be normalized. Note that the base, 2. of the scale factor and the leading 1
of the mantissa are both fixed. They do not need to appear explicitly in the representation.

Instead of the actual signed exponent, £, the value stored in the exponent field is an
unsigned integer E' = E + 127. This is called the excess-127 format. Thus, £ is in the
range 0 < E’ < 255. The end values of this range, 0 and 255, are used to represent special
values, as described later. Therefore, the range of E’ for normal values is 1 < E" < 254,
This means that the actual exponent, E, is in the range —126 < E < 127. The use of the
excess-127 representation for exponents simplifies comparison of the relative sizes of two
floating-point numbers. (See Problem 9.23.)

The 32-bit standard representation in Figure 9.26a is called a single-precision repre-
sentation because it occupies a single 32-bit word. The scale factor has a range of 2-'%°
to 2+127, which is approximately equal to 105**. The 24-bit mantissa provides approxi-
mately the same precision as a 7-digit decimal value. An example of a single-precision
floating-point number is shown in Figure 9.265.

To provide more precision and range for floating-point numbers, the IEEE standard also
specifies a double-precision format, as shown in Figure 9.26¢. The double-precision format
has increased exponent and mantissa ranges. The 11-bit excess-1023 exponent £’ has the
range 1 < E' < 2046 for normal values, with 0 and 2047 used to indicate special values,
as before. Thus, the actual exponent E is in the range —1022 < E < 1023, providing scale
factors of 27'%%? to 2193 (approximately 10*°"). The 53-bit mantissa provides a precision
equivalent to about 16 decimal digits.

2.B. What is system software? List functions of system software and explain how the
processor is shared between user program and OS routine.

Sol:

Software
System software is a collection of programs that are executed as needed to perform
functions such as:
e Receiving and interpreting user commands.

e Entering and editing application programs and storing them as files in secondary storage
devices.

e Managing the storage and retrieval of files in secondary storage devices.

e Running standard application programs such as word processors, spreadsheets or games
with data supplied by users.

e Controlling 1/0 units to receive input information and produce output results.

e Translating programs from source form prepared by user into object form consisting of
machine instructions.

e Linking and running user written application programs with existing standard library
routines such as numerical computational packages.

A compiler is a system software program translates the high level language program in to a

suitable machine language program containing instructions such as Add and Load instructions.

Operating system (OS) is a large program or actually a collection of routines that is used
to control the sharing of and interaction among various computer units as they execute application
programs. The OS routines perform the tasks required to assign computer resources to individual
application programs. These tasks include assigning memory and magnetic disk space to program
and data files, moving data between memory and disk units and handling 1/O operations.

Consider a system with one processor, one disk and one printer. When the application
program has been compiled from a high language form to machine language form and stored on
the disk. The first step is to transfer this file into the memory. When the transfer is complete,
execution of the program is started. Assume part of the program’s task involves reading a data file
from the disk in to the memory, performing some computations on the data and printing the results.
When the execution of the program reaches the point where the data file is needed, the program
requests the operating system to transfer the data file from the disk to the memory. The OS
performs this task and passes the execution control back to the application program, which then
proceeds to perform the required computation. When the computation is completed and the results
are ready to be printed, the application program again sends the request to the operating system.
An OS routine is then executed to cause the printer to print the results.

Printer

Disk

oS
routines|

Program

Time

The execution control passes back and forth between application program and OS routines.
This sharing of processor execution time is illustrated by a time line diagram as shown in Fig
1.5. During the time period t, to t;, an OS routine initiates the application loading program
from the disk to the memory, waits until the transfer is completed, and then passes execution
control to the application program. A similar pattern of activity occurs during period t, to t;
and period t, to ts , when the operating system transfers the data file from the disk and print
the results. At ts, the operating system may load and execute another application program.
Notice that the disk and processor are idle during most of the time period t, to ts. The operating
system manages the concurrent execution of several application programs to make best
possible use of computer resources. This pattern of concurrent execution is called
multiprogramming or multitasking.

2.C. Explain computer basic performance equation.

Basic Performance Equation

Let T be the processor time required to execute a program that has been prepared by some
high level language. The compiler generates machine level object program that corresponds to
source program. Assume that complete execution of the program requires the execution of N
machine language instructions. Suppose that the average number of basic steps needed to
execute one machine instruction is S, where each basic step is completed in one clock cycle. If
the clock rate is R cycles per second, the program execution time is given by basic performance
equation.

N XS

R
To achieve high performance, the value of T must be reduced which can be done by

reducing N and S, and increasing R. The value of N is reduced if the source program is
compiled in fewer machine instructions. The value of S is reduced if instructions have a smaller
number of basic steps to perform or if the execution of instructions are overlapped. Using a
higher-frequency clock increases the value of R which means the time required to complete a
basic execution step is reduced.

T =

3.A. What is an addressing mode? Explain any five types of addressing modes with
examples.

Sol:
Addressing Modes
The different ways in which the location of an operand is specified in an instruction is
known as addressing modes. Variables and constants are the simplest data types. In assembly
language, a variable is represented by allocating a register or memory location to hold its value.
Thus, the value can be changed as needed using appropriate instructions.
e Register mode — The operand is the contents of a processor register; the name of the
register is given in the instruction.
e Absolute mode — The operand is in a memory location; the address of this location is given
explicitly in the instruction.

The instruction Move LOC,R2
uses two modes. Processor registers are temporary storage locations where data in a register is
accessed using the Register mode. Address and data constants can be represented in assembly
language using the Immediate mode addressing where the operand is given explicitly in the
instruction. For example, the instruction

Move 2OOimmediate'RO

Places the value 200 in register R0. A common convention is to use # in front of the immediate
value to indicate that this value is to be used as an immediate operand. Hence we can write the
instruction above in the form
Move #200,R0

Constant values are used frequently in high-level language programs. The statements A = B + 6
contains the constant 6. Assuming that A and B have been declared as variables and may be
accessed using Absolute mode.

Move B,R1

Add #6,R1

Move R1,A

Indirection and Pointers

In indirect mode addressing, the instruction does not give the operand or the address
explicitly. Instead it provides information from which the memory address of the operand can be
determined. This address is referred to as effective address (EA) of the operand.

Indirect mode — The effective address of the operand is the contents of a register or memory
location whose address appears in the instruction.

To execute the Add instruction in Fig 2.1a, the processor uses the value B, which is in the
register R1, as the effective address of the operand. It requests a read operation from the memory
to read the contents of location B. The value read is the desired operand, which the processor adds
to the contents of register RO. Indirect addressing through a memory location is also possible as
shown in Fig 2.1b. In this case, the processor first reads the contents of memory location A, then
request the second read operation using the value B as a address to obtain the operand.

Rl

Add (R1),RO

Operand

! Main

memory

Register

a) Through a general purpose register
Fig 2.1: Indirect addressing

Add (A)RO

b) Through a memory location

The register or the memory location that contains the address of the operand is called a

pointer.

Indexing and Arrays

This addressing mode provides flexibility for accessing operands and is useful in dealing
with lists and arrays.

Index mode — The effective address of the operand is generated by adding a constant value
to the contents of a register. This register is referred to as index register.

We indicate the Index mode symbolically as X (Ri) where X denotes the constant value
contained in the instruction and Ri is the name of the register involved. The effective address of

the operand is given by

EA = X + [Ri]

Fig 2.2 illustrates two ways of using Index mode. In Fig 2.2a, the index register R1 contains
the address of the memory location and the value X defines an offset or displacement from this

address to the location where the operand is found.

T"
20 = offset
4

Add

20(R1),R2

1000

Operand

Fig 2.2 a: Offset is given as a constant

Rl

An alternate use is illustrated in Fig 2.2b. Here, the constant X corresponds to a memory
address and the content of the index register defines the offset to the operand. In either case, the
effective address is the sum of two values, one is given explicitly in the instruction and the other

is stored in the register.

Add 1000(R1).R2

—I— 1000 20 Rl

20 = offset .

J— 1020 Operand

Fig 2.2b: Offset is in the register

Relative Addressing

Here the Program Counter (PC) is used instead of a general purpose register. In Relative
mode, the effective address is determined by the Index mode using program counter in place of
general-purpose register Ri. It’s most common use is to specify the target address in branch
instructions. An instruction such as

Branch >0 LOOP
causes program execution to go to the branch target location identified by the name LOOP if the
branch condition is satisfied. This location can be computed by specifying it as an offset from the
current value of the program counter. Suppose that Relative mode is used to generate the target
branch address LOOP in the Branch instruction of the program
LooP: Add (R2),R0

Add #4,R2

Decrement R1

Branch >0 LOOP

Assume that the four instructions of the loop body, starting at LOOP are located at memory
locations 1000, 1004, 1008 and 1012. Hence the updated contents of the PC at the time of branch
target address is generated will be 1016. To branch to location LOOP(1000), the offset needed is
X = —16.

Auto-increment mode — The effective address of the operand is the contents of a register specified
in the instruction. After accessing the operand, the contents of this register is automatically
incremented to point to the next item in the list. The Auto-increment mode is written as

(Ri) +

The increment is 1 for byte-sized operands, 2 for 16 bit operands and 4 for 32 bit
operands.

Auto-decrement mode — The content of a register specified in the instruction is first automatically
decremented and then used as effective address of the operand. In this mode, operands are accessed
in descending address order.

These two modes can be used together to implement an important data structure called
stack.

3.B. Write a program to add ‘n’ number using indirect addressing mode.
Sol:

The programme is written to add n — numbers located in the memory starting at location
address labeled as List and the result is stored in the location labeled as SUM.

We assume a 32-bit word-length and Each number is assumed to be of 32 bits and each
general purpose register is of 32 bits

Move #List, RO
Move N, R1
Clear R2
Loop: ADD (RO), R2
ADD #4, RO

Decrement R1
Branch >0 Loop
Move R2, SUM

3.C. Explain Stack Operations
Sol:

Stack operations are facilitated with Stack pointer. This register should not be used for
any other purpose. The stack grows in the direction of decreasing memory addresses. In
other words, Stack memory is always defined at the top of memory. It works on Last-in-

First-Out (LIFO) technique.

The general instructions used for stack operations are:

1) PUSH Reg/[MemoryLocation]
2) POP Reg/[Memory Location]

Suppose we define the Stack at 7018 i.e. Stack Pointer Register is currently Loaded with
7019 and if we execute a Push Instruction say,

Eg: PUSH RO:

Stepl: The Stack-Pointer Contents are auto-decremented to point to the previous word

address.

Step2: The contents of RO is then saved on to this new Word address in memory pointed

out by Stack Pointer contents

Status of Registers and Mem-Locations
before Executing PUSH RO

Status of Registers and Mem-Locations
After Executing PUSH RO

SP :=7018 H SP=7018-4=7014 H
(Assuming a Word-Length of 4-bytes)
R0O:= 0024 H R0=0024 H
[7014]=0005 H [7014] = 0024 H
R3:=0060 H R3=0060 H

Now, if the POP instruction is executed say,

Eg: POP R3

Stepl: The contents from the memory-location pointed out by Stack-Pointer i.e the
address 7014 is read and pasted into R3 register in the Processor

Step2: The contents of Stack-Pointer is then auto incremented to point to the next word

Status of Registers and Mem-Locations
before Executing POP R3

Status of Registers and Mem-Locations
After Executing POP R3

SP:=7014H SP=7018-4=7014 H
(Assuming a Word-Length of 4-bytes)
R0:= 0024 H R0=0024 H

[7014]=0024 H

[7014] = 0024 H

R3:=0060 H

R3=0024 H

4.A. What are Assembler Directives? Explain various assembler directives used in ALP.
Sol:
Assembler Directives

The assembly language allows the programmer to specify other information needed to
translate the source program to object program. Suppose the name SUM is used to represent the
value 200. This fact may be conveyed to the assembler program through a statement such as

SUM EQU 200

This statement does not denote the instruction that will be executed when the object
program is run. It informs the assembler that the name SUM should be replaced by the value 200
wherever it appears in the program. Such statements are assembler directives (or
commands) are used by the assembler when it translates the source program in to a object program.
ORIGIN is a directive that tells the assembler program where in the memory to place the data
block.
DATAWORD directive is used to inform the assembler to place the data in the address.
RESERVE directive declares a memory block and does not cause any data to be loaded in these
locations.
ORIGIN directive specifies that the instructions of an object program are to be loaded in the
memory starting at an address.
END is directive which indicates the end of the source program text. The END directive includes
the label START, which is the address of the location at which execution of the program is to
begin.
RETURN is an assembler directive that identifies the point at which the execution of the program
should be terminated.

4.B. Explain subroutine linkage with an example using linkage register.

Subroutines

It is often necessary to perform a particular subtask many times on different data values.
Such subtask is called subroutine. When a program branches to a subroutine we call that it is
calling a subroutine. The instruction that performs this branch operation is called a Call instruction.
The subroutine is said to return to program that called it by executing a Return instruction. The
location where the calling program resumes execution is the location pointed by the updated PC
while the Call instruction being executed. Hence the contents of the PC must be saved by the Call
instruction to enable correct return to the calling program. This way in which the computer makes
it possible to call and return from subroutines is referred to as subroutine linkage method.

The Call instruction is a special branch instruction that performs the following operations:
1. Store the contents of PC in the link register.
2. Branch to the target address specified by the instruction.

The Return instruction is a special branch instruction that performs the operation:

Branch to the address contained in the link register.

Fig 2.6 illustrates this procedure.

Memory Calling program Memory Subroutine SUB
location location
L]
L]
L]
200 Call SUB _— > 1000 First instruction
204 next instruction «+—
L]
L]
L]
Return
1000
PC 204
Link 204
Call Return

Fig 2.6: Subroutine linkage using a link register

4.C. Explain the shift and rotate operations with examples.

Sol:
Shift and Rotate Instructions

2102 SHIFT aND ROTATE INSTRUCTIONS

There are many applications that require the bits of an operand to be shifted right or
left some specified number of bit positions. The details of how the shifts are performed
depend on whether the operand is a signed number or some more general binary-coded
information. For general operands, we use a logical shift. For a number, we use an
arithmetic shift, which preserves the sign of the number.

fogical Shifts

Two logical shift instructions are needed, one for shifting left (LShiftl.) and another
for shifting right (LShiftR). These instructions shift an operand over a number of bit
positions specified in a count operand contained in the instruction. The general form
of a logical left shift instruction is

LShiftl. count,dst

The count operand may be given as an immediate operand, or it may be contained in
a processor register. To complete the description of the left shift operation, we need to
specify the bit values brought into the vacated positions at the right end of the destination
operand, and to determine what happens to the bits shifted out of the left end. Vacated
positions are filled with zeros, and the bits shifted out are passed through the Carry flag,
C, and then dropped. Involving the C flag in shifts is useful in performing arithmetic
operations on large numbers that occupy more than one word. Figure 2.30a shows an
example of shifting the contents of register RO left by two bit positions. The logical
shift right instruction, LShiftR, works in the same manner except that it shifts to the
right. Figure 2.30b illustrates this operation.

- C ra—o RO -— ()
before: | 0 0 1t 110 0 1 1
after: | 1 1 1 0 - - 1 0 0

(a) Logical shift left LShiftt. #2 RO

0 — RO —a=

before: gt 1 10 - 0 1 1 0

after: 000111 N |] 1

(b) Logical shift right LShiftR #2,R0

- RO = C

before: 1 00 11 - 0 10 I 0

after: 1 1 1 001 e o {) 1

(c) Arithmetic shift right AShiftR #2,R0

Figure 2.30 Logical and arithmeic shift instructions.

Arithmetic Shifts

A study of the 2’s-complement binary number representation in Figure 2.1 reveals
that shifting a number one bit position to the left is equivalent to multiplying it by
2; and shifting it to the right is equivalent to dividing it by 2. Of course, overflow
might occur on shifting left, and the remainder is lost in shifting right. Another im-
portant observation is that on a right shift the sign bit must be repeated as the fill-in
bit for the vacated position. This requirement on right shifting distinguishes arith-
metic shifts from logical shifts in which the fill-in bit is always 0. Otherwise, the two
types of shifts are very similar. An example of an arithmetic right shift, AShiftR, is
shown in Figure 2.30c. The arithmetic left shift is exactly the same as the logical left
shift.

Rotate Operatinns

In the shift operations, the bits shifted out of the operand are lost, except for the
last bit shifted out which is retained in the Carry flag C. To preserve all bits, a set
of rotate instructions can be used. They move the bits that are shifted out of one end
of the operand back into the other end. Two versions of both the left and right rotate
instructions are usually provided. In one version, the bits of the operand are simply
rotated. In the other version, the rotation includes the C flag. Figure 2.32 shows the left
and right rotate operations with and without the C flag being included in the rotation.
Note that when the C flag is not included in the rotation, it still retains the last bit
shifted out of the end of the register. The mnemonics Rotatel, RotateLC, RotateR,
and RotateRC, denote the instructions that perform the rotate operations. The main use
for Rotate instructions is in algorithms for performing arithmetic operations other than
addition and subtraction,

T |

] 1!;7

before: [J n1 1 0 o1 1
——
after: 1l 1 11 N T A |
(a) Hotate left without carry Hofatel #2 RO
E— @ N
—
before: (03 N A T N | AT T |
nﬁa’:Ei 1 10 - +--01100
{b) Rotate left with carry Rotatel C #2,R0

before; o1t roe - - 011

=]

after: r1 o001 18>+« 0 1

before: or1rtv9 -+« 011 0

after: roo0ot1vto -« -0 1

{d) Rotaie right with carry RotateRC #2.R0

Figure 2.32 Rofate instructions.

5.A. Showing register configuration in I/O Interface, Explain program controlled
input/output with program.

4.1 ACCESsSING VO DEVICES

A simple arrangement to connect I/O devices to a computer is to use a single bus
arrangement, as shown in Figure 4. 1. The bus enables all the devices connected to it to
exchange information. Typically, it consists of three sets of lines used to carry address,
data, and control signals. Each /0 device is assigned aunique set of addresses. When the
processor places a particular address on the address lines, the device that recognizes this
address responds to the commands issued on the control lines. The processor requests
either a read or a write operation, and the requested data are transferred over the data
lines. As mentioned in Section 2.7, when I/O devices and the memory share the same
address space, the arrangement is called memory-mapped /0.

With memory-mapped 1/0, any machine instruction that ¢an access memory can
be used to transfer data to or from an [/O device. For example, if DATAIN is the address

Processor Memory

1O device 1 oo 170 device n

Figure 4.1 A single-bus structure.

of the input buffer associated with the keyboard, the instruction
Move DATAIN,RO

reads the data from DATAIN and stores them into processor register R0. Similarly, the
instruction

Move RO,DATAOUT

sends the contents of register R0 to location DATAOUT, which may be the output data
buffer of a display unit or a printer.

Most computer systems use memory-mapped /0. Some processors have special
In and Out instructions to perform 1/O transfers. For example, processors in the Intel
family described in Chapter 3 have special IO instructions and a separate 16-bit address
space for /O devices. When building a compater system based on these processors, the
designer has the option of connecting /O devices to use the special IO address space
or simply incorporating them as part of the memory address space. The latter approach
is by far the most common as it leads to simpler software. One advantage of a separate
14O address space is that /O devices deal with fewer address lines. Note that a separate
DO address space does not necessarily mean that the /0 address lines are physically
separate from the memory address lines. A special signal on the bus indicates that the
requested read or write transfer is an 1O operation. When this signal is asserted, the
memory unit ignores the requested transfer. The /O devices examine the low-order bits
of the address bus to determine whether they should respond.

Figure 4.2 illustrates the hardware required to connect an /O device to the bus.
The address decoder enables the device to recognize its address when this address
appears on the address lines. The data register holds the data being transferred to or
from the processor. The status register contains information relevant to the operation
of the 10 device. Both the data and status registers are connected to the data bus and

Address lines
Bus { T Diata lines

r Control lines
SRS | ! Vo |
*I Address Control Data and E 10
{~§ decoder }-| circuits status registers | | [interface
i]
R %

Input device

Figure 4.2 1/O interface for an input device.

assigned unique addresses, The address decoder, the data and status registers, and the
conteol circuitry required 1o coordinate LD transfers constitute the device’s interface
circuir.

/O devices operate at speeds that are vastly different from that of the processor.
When a human operator is entering characters at a keyboard, the processor is capable of
executing millions of instructions between successive character entries. An instruction
that reads a character from the keyboard should be execated only when a character 1s
available in the input buffer of the keyboard interface, Also, we must make sure that an
input character 15 read only once.

The hasic ideas used for performing input and output operations were introduced
it Section 2.7, For an input device such as a kevboard, a status fag, SIN, 1s included in
the interface circuit as part of the status register. This {lag is set to 1 when a character
15 entered at the keyboard and cleared to 0 once thas character is read by the processot.
Hence, by checking the SIN fiag, the software can ensurc that it is always reading valid
data. This is often accomplished in a program loop that repeatedly reads the status
register and checks the state of SIN. When SIN hecomes equal to], the program reads
the input data register. A similar procedure can be used to control output operations
using an outpud status fiag, SOUT.

To review the basic concepts, let us consider a simple example of /0 aperations involv-
ing a keyboard and a display device in a computer system. The four registers shown
in Figure 4.3 are used in the data transfer operations. Register STAIUS contains two
control flags, SIN and SOUT, which provide status information for the keyboard and
the display unit, respectively. The two flags KIR(Q) and DIRE) in this register are used
in copjunction with intermpts, They, and the KEN and DEN bits in register CON-
TROL, wiil be discussed m Section 4.2, Data from the keyboard are made avaiiable

DATAIN l
e e et A e e et et et i
DATAOUT |
STATUS DIRQ 1 KIRQ | SOUT | SIN
i
CONTROL ; DEN | KEN
i

7] 5 4 3 2

[l

Figure 4.3 Registers ir keyboard ard disolay inferfaces.

Move #LINE,RD Initialize memory pointer.
WAITK TestBit #0,STATUS Test SIN.

Branch=0 WAITK Wait for character to be entered.
Move DATAIN R1 Read character.

WAITD TestBit #1STATUS Test SOUT.
Branch=0 WAITD Wait for display to become ready.
Move R1,DATAQUT Send character to display.
Move R1,(RO)+ Store charater and advance pointer.
Compare #80D,R1 Check if Carriage Return.
Branch#0 WAITK If not, get another character.
Move #30A,DATAOUT Otherwise, send Line Feed.
Call PROCESS Call a subroutine to process the

the input line.

Figure 4.4 A program that reads one line from the keyboard, stores it in memory buffer,
and echoes it back to the display.

in the DATAIN register, and data sent to the display are stored in the DATAOUT
register.

The program in Figure 4.4 is similar to that in Figure 2.20. This program reads a
line of characters from the keyboard and stores it in 2 memory buffer starting at location
LINE. Then, it calls a subroutine PROCESS to process the input line. As each character
is read, it is echoed back to the display. Register R0 is used as a pointer to the memory
buffer area. The contents of R0 are updated using the Autoincrement addressing mode
so that successive characters are stored in successive memory locations.

Each character is checked to see if it is the Carriage Return (CR) character, which
has the ASCII code OD (hex). If it is, a Line Feed character (ASCII code 0A) is
sent to move the cursor one line down on the display and subroutine PROCESS
is called. Otherwisc, the program loops back to wait for another character from the
keyboard.

This example illustrates program-controlled /0, in which the processor repeatedly
checks a status flag to achieve the required synchronization between the processor and
an input or output device. We say that the processor polls the device.

5.B. Explain the registers involved in DMA Interface.

Sol:

31 30 10

Status and control
IRQ —, I— Done
IE RIW
Starting address
Word count

Registers in a DMA interface.

Figure 4.18 shows an example of the DMA controller registers that are accessed
by the processor to initiate transfer operations. Two registers are used for storing the

starting address and the word count, The third register contains status and control flags.
The R/W bit determines the direction of the transfer. When this bit is set to 1 by a
program instruction, the controller performs a read operation, that is, it transfers data
from the memory to the 1/O device. Otherwise, it performs a write operation. When the
controller has completed transferring a block of data and is ready to receive another
command, it sets the Done flag to 1. Bit 30'is the Interrupt-enable fiag, IE. When this flag
is set to 1, it causes the controller to raise an interrupt after it has completed transferring
a block of data. Finally, the controller sets the IRQ bit to 1 when it has requested an

interrunt.

Q5.C: What is an Interrupt? Explain interrupt hardware.
Sol:

Suppose a program enters a wait loop in which it repeatedly
tests the device status. During this period, the processor is not performing any useful
computation. There are many situations where other tasks can be performed while
waiting for an 1/O device to become ready. To allow this to happen, we can arrange for
the 1/0 device to alert the processor when it becomes ready. It can do so by sending
a hardware signal called an interrupt to the processor. At least one of the bus control
lines, called an interrupt-request line, is usually dedicated for this purpose. Since the
processor is no longer required to continuously check the status of external devices, it
can use the waiting period to perform other useful functions. Indeed, by using interrupts,
such waiting periods can ideally be eliminated.

Program | Program 2
COMPUTE routine PRINT routine

] L
) e

Interrupt ,

occurs —e=
here
l-"' i - -
M - i

Figure 4.5 Transfer of control fhmugh the use of interrupts.

The routine executed in response to an interrupt request is called the Interrupt
Service Routine. Interrupts bear considerable resemblance to subroutine calls.
Assume that an interrupt request arrives during execution of instruction — ‘i’ as
shown in the above figure, then :

processor first completes execution of instruction i. Then, it loads the program counter
with the address of the first instruction of the interrupt-service routine. For the time
being, let us assume that this address is hardwired in the processor. After execution
of the interrupt-service routine, the processor has to come back to instruction i + 1.
Therefore, when an interrupt occurs, the current contents of the PC, which point to
instruction 7 + 1, must be put in temporary storage in a known location. A Return-
from-interrupt instruction at the end of the interrupt-service routine reloads the PC
from that temporary storage location, causing execution to resume at instroction i + 1.
In many processors, the return address is saved on the processor stack. Alternatively, it
may be saved in a special location, such as a register provided for this purpose.

An interrupt is more than a simple mechanism for coordinating I/O transfers. In
a general sense, interrupts enable transfer of control from one program to another to
be initiated by an event external to the computer. Execution of the interrupted program
resumes after the execution of the interrupt-service routine has been completed. The
concept of interrupts is used in operating systems and in many control applications
where processing of certain routines must be accurately timed relative to external
events. The latter type of application is referred to as real-time processing.

42.1 INVERRUPY i‘{_;‘b. RINWVARE

We pointed out that an 1/O device requests an interrupt by activating a bus line called
interrupt-request. Most compaters are likely to have several I/O devices that can request
an interrupt. A single interrupt-request line may be used to serve n devices as depicted
in Figure 4.6. All devices are connected to the line via switches to ground. To request
an interrupt, a device closes its associated switch. Thus, if all interrupt-request signals
INTR, to INTR, are inactive, that is, if all switches are open, the voitage on the
interrupt-request line will be equal to Vyq. This is the inactive state of the line. When
a device requests an interrupt by closing its switch, the voltage on the line drops to 0,
causing the interrupt-request signal, INTR, received by the processor to go to 1. Since
the closing of one or more switches will cause the line voltage to drop to 0, the value

. OQ ‘i INTR
H- mri ?——m‘mz H— INTR
i i

bt

£

e
- amh iy
a— -

Figure 4.6 An equivalent circuit for an open-drain bus used 1o implement @ common
inferruptrequest line.

of INTR is the logical OR of the requests from individual devices, that is,
INTR = INTR, + - -- + INTR,

It is customary to use the complemented form, INTR, to name the interrupt-request
signal on the common line, because this signal is active when in the low-voltage state.

In the electronic implementation of the circuit in Figure 4.6, special gates known as
open-collector (for bipolar circuits) or open-drain (for MOS circuits) are used to drive
the INTR line. The output of an open-collector or an open-drain gate is equivalent to
a switch to ground that is open when the gate’s input is in the 0 state and closed when
it is in the 1 state. The voltage level, hence the logic state, at the output of the gate is
determined by the data applied to all the gates connected to the bus, according to the
equation given above. Resistor R is called a pull-up resistor because it pulls the line
voltage up fo the high-voltage state when the switches are open.

6. A. Explain the following method of handling interrupts from multiple devices:
i. Daisy chain method ii. Priority structure

X

Priority arbitration
circuit

Fig 6: Implementation of interrupt priority using individual interrupt request & acknowledge

Simultaneous Requests

lines

If several devices share one interrupt request line, some other mechanism is needed.

When several devices raises interrupt request and INTR line is activated, the processor
responds by setting the INTA line to 1. The signal i1s received by device 1. Device 1 passes
the signal onto device 2 only if it does not require any service. If device 1 has pending
request for interrupt, it blocks the INTA signal and proceeds to put its identification code on
to data lines. In daisy chain the device that is electrically closest to the processor has the

highest priority.

N

INTR

S0r

5

Device |

el e &

Fig 7: Daisy chain

- e
—

Device n

Devices can be organized in groups and each group is connected at a different priority
level. Within group devices are connected in daisy chain.

INTR1
R
#= Device = Device ——
1 INTAI
i , L INRp
Lot ‘:
[|
' : = Device Device p——
INTAp ;

Priority arbitration
circuit

Fig 8: Arrangement of priority groups

6.b What is bus arbitration ? Explain centralized bus arbitration mechanism with a neat diagram.

Bus Arbitration-

Bus Arbitration refers to the process by which the current bus master accesses and then leaves
the control of the bus and passes it to the another bus requesting processor unit. The controller
that has access to a husat an instance is known as Bus master.

A conflict may arise if the number of DMA controllers or other controllers or processors try to
access the commaon bus at the same time, but access can be given to only one of those. Only one
processor or controller can be Bus master at the same point of time. To resolve these conflicts,
Bus Arhitration procedure isimplemented to coordinate the activities of all devices requesting
memory transfers. The selection of the bus master must take into account the needs of varlous
devices by establishing a priority system for gaining access to the bus. The Bus Arbiter decides
who would become current bus master.

There are two approadhes to bus arbitration:

1. Centralized Arbitration

In centralized bus arbitration, a single bus arhiter performs the required arbitration. The bus
arbiter may be the processor or a separate controller connected to the bus.

There are three different arbitration schemes that use the centralized bus arbitration approach.
There schemes are:

a) Daisy chalning
b} Folling method
o) Independent request

a) Daisy chaining
The system connections for Daisy chaining method are shown in fig below.
a) Daisy chaining

The system connections for Daisy chaining method are shown in fig below.

Master 1 Maste’ 2 Master N
Bus access Bus acoess Bus access
logc kg o
Bus grant
Bus request
Controler
Bus busy

It is simple and cheaper method. All masters make use of the same line far bus reguest. In
response to the busreguest the controller sends a busgrantifthebusis free. The busgrant signal
serfally propagates through each master untfl itencounters the first one that isrequesting access
to the bus. This master blocks the propagation of the bus grant signal, activities the husy line and
gains contraol of the bus. Therefore any ather requesting module will not receive the grant signal
and hence cannot get the bus access.

b] Polling meathod

The systermn connections for polling method are shown in figure abowve.

In this the controller is used to generate the addresses for the master. Mumber of address line
reguired depends on the number of master connected in the system. For example, if there are 8
rasters connected in the system, at least three address linesare required. In response to the bus
request controller generates a sequence of master address. When the requesting master
recognizes its address, it activated the busy line ad begins to use the bus.

C. Independent request

Bus prant !

Bus request 1

Bus grant 2

Bus request 2
Bus grant N
Bus request N
Bus busy

Controlier

The figure below shows the systern connections for the independent request scheme. In this

scheme each master has a separate pair of bus request and bus grant lines and each pair has a
priority assigned to it. The built in priority decoder within the controller selects the highest
priority request and asserts the corresponding bus grant signal.

6¢ Explain the concept of vectored interrupt.

Vectored Interrupts

« A device requesting an infermupt can identify

itself by sending a special code to the
processor over the bus.

» Interrupt vector
» Avoid bus collision

7.a. Explain internal organization of 16X8 memaory chips.

Internal Organization of Memory Chips
Amemory cell is capable of storing 1-bit of information. A number of memory cells are organized in the

form of & matrix to form the memory chip.

Wa
e
ik}
Ag—— 'g — — — 4 o
g Wi |
Ap—— O
@0 I 1 I i I
Ao N @ ! I I i [
@ | I I Lo |
< [we | | |
| 1 1 .
Sense/Wnte Sense/Wnte Sense/Wnte
s
br b b
16 memory location Wo, Wiy, WHg
B bits in each location by, b, oo b

Each row of cells constitutes a memony word, and all cell of a row are connected to a common ling which is
referred asword line. An address decoder is used to drive the word ling. At a particular instant, one word
ling is enabled depending on the address present in the address bus. The cells in each column are
connected by two lines. These are known as bit lines. These bit lines are connected to data input line and
data output line through a Sensefrite circuit. During a Eead operation, the Sensefrite circuit sense, or
read the information stored in the cells selected by a wiord line and transmit this information to the output
data line. During a write operation, the sensefwrite circuit receive information and store it inthe cells of the

selected word.

A memory chip consisting of 16 words of 8 bits each, usually referred to as 16 x 8 organization. The data
input and data output line of each Sensefrite circuit are connected to a single bidirectional data line in
order to reduce the pin required. For 16 words, we need an address bus of size 4. In addition to address
and data lines, two control lines, and CS, are provided. The line is to used to specify the reguired
operation about read orwrite. The CS (Chip Select) ling is required to select a given chip in a mult chip

rremaory Syster.

Zonsider a slightly larger memaory unit that has 1k {1024) memory cells.
128 ¥ 8 memory chipsIfitis organised as a 128 x 8 memory chips, then it has got 128 memory words of
size 8 bits. So the size of data bus is & bits and the size of address bus is 7 bits (2%7=128). The storage

organization of 128 x 8 memory chip is shown in the figure 3 5.

7b. With a neat diagram, explain the working principle of magnetic disk.

track t <«— spindle

N =
| <[arm assembly
sector s |

|

| read-write
: head
|
|

N

LD

rotation

platter

The disk has two concentric tracks, each one has various division as
sectors for. Information keeps storing on the disk in the form of
magnetized regions within the sectors. The read/write head of disk
drive accesses the information by sensing the magnetic field. When
data allows to write to the disk, then read/write head creates a
magnetic field.

7c. With a neat diagram explain virtual memory organization.\
Virtual memory is the separation of logical memory from physical
memory. This separation provides large virtual memory for
programmers when only small physical memory is available.

Virtual memory is used to give programmers the illusion that they
have a very large memory even though the computer has a small main

memory. It makes the task of programming easier because the
programmer no longer needs to worry about the amount of physical
memory available.

8a. Explain the internal organization of 2MX8 DRAM memory chip with
a neat diagram.

With a neat diagram, explain the organization of 2M X 8 dynamic
memory chip. Organized as 4kx4k array. 4096 cells in eachrow are
divided into 512 groups of 8. Each row can store 512 bytes. 12 bits
to select a row, and 9 bits to select a group of 8 bits in a row. Total of
21 bits. (2 MB). Reduce the number of bits by multiplexing row and
column addresses. First apply the row address, RAS signal
latches the row address. Then apply the column address, CAS
signal latches the address. Timing of the memory unit is
controlled by a specialized unit which generates RAS and CAS.
This is asynchronous DRAM. - All the contents of a row are
selected based on a row address.Particular byte is selected based
on the column address. - Add a latch at the output of the sense
circuits in each row. All the latches are loaded when the row is
selected. Different column addresses can be applied to select
and place different bytes on the data lines. - Consecutive sequence of
column addresses can be applied under the control signal CAS,
without reselecting the row. Allows a block of data to be transferred at
a much faster rate than random accesses. A small collection/group of

bytes is usually referred to as a block. This transfer capability is
referred to as the fast page mode feature.

RAS
Row
Row | . |4096%(512x8)
> address 3 e | 2 T cehamy
latch _
Ap-elAg_ g — Sease / Write [+ C3
CUEHE e RIW
Column
Columa
:: "o address
m m
CAS D, Iy

8b. Explain a static RAM cell with a neat diagram.

cell is designed with two inverters, which are
cross-linked |ike as latch form. This latch is made connection to two bit line
along with two transistors T1 and T2. Now both transistors are capable to alter
their modes {(open or close} under control of word line, and this entire process is
controlled by address decoder. When word line goes to ground |level then both

transistors get turned off, and |latch starts to retain own state.

SRAM Circuit Diagram

thaln Faen

8c. Discuss the concept of cache memory.

The data or contents of the main memaory that are used frequently by CPU are stored in the cache
memory 5o that the processor can easily access that data in a shorter time. \Whenewer the CPU needs to
access memory, it first checks the cache memory. If the data is not found in cache memory, then the

CPU mowves into the main memory,

Cache memory is placed between the CPU and the main memoaory. The block diagram for a cache

memory can be represented as:

Byts or word Block
transfer transfer

— —

Cache Memory

9a. Explain with the help of neat diagram single bus organization of a
data path inside a processor.

Single-bus Organization of the Datapath inside CPU 1

Intemal processor

bus
/\ Control signals
— o 1
Instruction
Address
Addres, decoder and
lines
-] MAR control logic
Memory
bus
- e MDR
Data
lines IR

Constant 4 H - RO

—e\ A Y B
ALL Sub Rin-1)
control 2 AL
anes : u .—I
— Carry-in
XOR - TEMP
\
y A -

The operation or task that must perform by CPU are:
Fetch Instruction: The CPU reads an instruction from memory.

Interpret Instruction: The instruction is decoded to determine what action is required.

Fetch Data: The execution of an instruction may require reading data from memory or
I/O module.

Process data: The execution of an instruction may require performing some arithmetic

or logical operation on data.

Write data: The result of an execution may require writing data to memory or an 1/0
module.

To do these tasks, it should be clear that the CPU needs to store some data
temporarily. It must remember the location of the last instruction so that it can know
where to get the next instruction. It needs to store instructions and data temporarily
while an instruction is begin executed. In other words, the CPU needs a small internal

memory. These storage location are generally referred as registers.

The major components of the CPU are an arithmetic and logic unit (ALU) and a control
unit (CU). The ALU does the actual computation or processing of data. The CU controls
the movement of data and instruction into and out of the CPU and controls the operation

of the ALU.

The CPU is connected to the rest of the system through system bus. Through system
bus, data or information gets transferred between the CPU and the other component of

the system. The system bus may have three components:

Data Bus:

Data bus is used to transfer the data between main memory and CPU.

Address Bus:
Address bus is used to access a particular memory location by putting the address of

the memory location.

Control Bus:

Control bus is used to provide the different control signal generated by CPU to different

part of the system. As for example, memory read is a signal generated by CPU to
indicate that a memory read operation has to be performed. Through control bus this

signal is transferred to memory module to indicate the required operation.

There are three basic components of CPU: register bank, ALU and Control Unit. There
are several data movements between these units and for that an internal CPU bus is
used. Internal CPU bus is needed to transfer data between the various registers and the

ALU.

9.b. Discuss the control sequence for the execution of the instruction
ADD (R3),R1.

S e O ”/&;;gjl':y
® Inlernall)p;ocessor
{'l
Instruction o
Add (R3), R1
Instruction
A;i:er:ss o — decoder and
J contologc
1 PC,.t. MAR, , Read, Select4 Add, Z,, Mamory
2 Zowt, PCn , Y, WMFC l B.T
3 MDRom . IR n lines
4 R3ut , MARn , Read
Y
5 R1out , Yin, WMFC COnslan
6 MDR,,, SelectY, Add, Z;, b
7 Zout, R10 , End \ "‘“l" / | :
A B
Control sequencdor execution of the instruction Add (R3),R1.
A\

9c. Describe the organization of hardwired control.

HARDWIRED CONTROL UNIT
Diagram shows the CLK .| Control step
typical hardwired counter
coifrol Untk ~ « = o8 SRR 8 e
Yy v ¥
- External
Fixed : inputs
IIR Logic
ot - Condition
> 5 codes
b |
Control signals

Fundamentals of Hardwired control

controller of a hardwired control unit is viewed
as a sequential logic circuit that implements
microoperations using a combinational
circuit.

The inputs are from the microperation counter,
Instruction register and status register,
which are transformed into a set of outputs
that are the control signals.

10. A. Explain multiple bus organizations with a neat diagram.

Multiple Bus Organization

Multiple bus organization in computer architecture is a design that allows multiple
devices to work simmultaneously. This reduces the time spent waiting and improves
the computer's speed. The main advantage of multiple bus organization is the
reduction in the number of cycles required for execution.

In a multiple bus structure, one bus is used to fetch instructions and the other is used
to fetch data. The same bus is shared by three units: memeory, processor, and [/0
units.

In a multiple bus system, each processor-memory pair is linked by various redundant
paths. This means that the failure of one or more paths can be tolerated, but it will
degrade system performance.

The main reason for having multiple buses in a computer design is to improve
performance. Other advantages include:

« Better connectivity

« An increase in the size of the registers

There are three types of bus lines: data bus, address bus, and comtrol
bus. Communication over each bus line is performed in cooperation with another.

Three bus organization of data path

In single bus organization, only one data itemn can be transferred over the bus
in a clock cycle. To reduce the number of steps needed, most commercial processors

provide multiple internal paths that enable several transfers to take place in parallel.

Figure illustrates a three-bus structure used to connect the registers and the
ALU of a processor. All general-purpose registers are combined into a single block
called the register file. The register file in Figure is said to have three ports. There are
two outputs, allowing the comtents of two differemt registers to be accessed
simultaneously and have their contents placed on buses A and B. The third port allows
the data on bus Cto be loaded into a third register during the same clock cycle.

Buses A and B are used to transfer the source operands to the A and B inputs of
the ALU, where an arithmetic or logic operation may be performed. The result is
transferred to the destination over bus C. If needed, the ALU may simply pass one of
its two input operands unmodified to bus C. We will call the ALU control signals for
such an operation R=A or R=B. A second feature in Figure is the introduction of the
Incrementer unit, which is used to increment the PC by 4. Using the Incrementer
eliminates the need to add 4 to the PC using the main ALD, as was done in single bus
organization. The source for the constant 4 at the ALU input multiplexer is still useful.

Ardon:

!, PCout, R=E8 MARIn, Read, IncPC

2, WEMC

3. MDRowtE, R=&, Irin

4. R4our, REoutE, SclectA, Add, Rewn, End,

Copaider the three—operand iostruction Add R4 ,RB RG:

The zootrol s2quanse for exazutiog this iostrustion iz given io Figure 2.8,

In step 1, the contents of the PC are passed through the ALU, using the R=B control
signal, and loaded into the MAR to start a memoty read operation. At the same time
the PC is incremented by 4. Note that the value loaded into MAR is the original
contents of the PC. The incremented value is loaded into the PC at the end of the
clock eyele and will not affect the contents of MAR.

In step 2, the processor waits for MFC and loads the data received into MDER, then

transfers them to IR in step 3. Finally, the execution phase of the instruction requires
only one control step to complete, step 4. By providing more paths for data transfer a
significant reduction in the number of clock cycles needed to execute an instruction

is achieved.

10.b What is microprogrammed control ? Explain the organization with
suitable diagrams and examples.

Instruction Register
Op code Address field I

Instruction
Regular signal from decoder

quartz generator
Timing e e
Unit £
Control Siohal — Control signals
Next control A s:err‘;t'fnlgr:atr' for other
state generator 9 : X computer units
Flags and variables External signals

A micro-programmed control unit can be described as a simple logic circuit. We can use
it in two ways, i.e., it is able to execute each instruction with the help of generating control
signals, and it is also able to do sequencing through microinstructions. It will generate
the control signals with the help of programs. At the time of evolution of CISC architecture
in the past, this approach was very famous. The program which is used to create the
control signals is known as the "Micro-program”. The micro-program is placed on the

processor chip, which is a type of fast memory. This memory is also known as the control
store or control memory.

A micro-program is used to contain a set of microinstructions. Each microinstruction or
control word contains different bit patterns. The n bit words are contained by each
microinstruction. On the basis of the bit pattern of a control word, every control signals
differ from each other.

Like the above, the instruction execution in a micro-programmed control unit is also
performed in steps. So for each step, the micro-program contains a control word/
microinstruction. If we want to execute a particular instruction, we need a sequence of
microinstructions. This process is known as the micro-routine. The image of a micro-
programmed control unit is described as follows. Here, we will learn the organization of
micro-program, micro-routine, and control word/ microinstruction.

