
VTU solutions BEC306C Computer Organization and Architecture:

1. A. With a neat diagram, explain the basic operational concept of Computer

Basic Operational Concepts

 To perform a given task, an appropriate program consisting of a list of instructions is stored

in the memory. Individual instructions are brought from the memory into the processor, which

executes the specified operations. Data to be used as operands are also stored in the memory. A

typical instruction may be

Add LOCA, R0

 This instruction adds the operand at memory location LOCA to the operand in a register in

the processor, R0, and places the sum in the register R0. The original contents of location LOCA

are preserved whereas those of R0 are overwritten. First the instruction is fetched from the memory

into the processor. Next the operand at LOCA is fetched and added to the contents of R0. Finally

the resulting sum is stored in register R0.

 Transfers between memory and processor are started by sending the address of the memory

location to be accessed to the memory unit and issuing the appropriate control signals. The data is

transferred to or from the memory. The memory and processor connection is shown in Fig 1.2.

Fig 1.2 Connections between the processor and memory

Memory

MAR

PC

IR

MDR

R0

R1

.

.

Rn-1

Control

ALU

n general purpose registers

r

 The Instruction register (IR) holds the instruction that is currently being executed. Its

output is available to control circuits which generate the timing signals that control various

processing elements involved in executing the instruction.

 The Program Counter (PC) holds the address of the next instruction to be fetched and

executed. During the execution of an instruction, the contents of the PC are updated to correspond

to the address of the next instruction to be executed. MAR and MDR facilitate communication

with the memory.

 MAR (Memory Address Register) hold the address of the location to be accessed and MDR

(Memory Data Register) contains data written into or read out of the addressed location.

 If some devices require urgent servicing then they raise the interrupt signal interrupting the

normal execution of the current program. The processor provides the requested service by

executing the appropriate interrupt service routine.

1.B. Explain the following with an example: 1) Three Address Instruction 2) Two

Address Instruction 3) One Address Instruction

Basic Instruction Types:

Three-Address Instructions: There are 3-operands or three addresses (labels used to

specify the location of data) present along with the Op-code in the instruction. In these

instructions at-most only two location can be in memory

Eg: Add R1, R2, R3 R3 ← R1 + R2 , Here R1, R2 and R3 are the general

purpose registers (GPRs) present in the Proessor Chip.

Two-Address Instructions: There are 2-operands or two addresses (labels used to

specify the location of data) present along with the Op-code in the instruction. In these

instructions at-most only one location can be in memory

Eg: Add R1, R2 R2 ← R1 + R2, Here R1 and R2 are the general

purpose registers (GPRs) present in the Proessor Chip.

One-Address Instructions: There is only 1-operands or 1- address (label used to specify

the location of data) present along with the Op-code in the instruction which may be a

memory location or any internal Processor Registers (GPRs).

Here all operations encoded in the Op-code of Instruction is carried out with respect to

the data in Accumulator-register (AC) present inside the Processor with the Accumulator

register also acting as the detination register after the operation.

Eg: Add M AC ← AC + [M] , Here the M represents any memory

Location data specified by memory-address M

1.C. Explain Big Endian and Little Endian with neat diagram

Big-Endian and Little-Endian Assignments:

Big-Endian: lower byte addresses are used for storing the most significant bytes of the

word

Little-Endian: opposite ordering. lower byte addresses are used for storing the less

significant bytes of the word

2.A. Discuss the IEEE standard for single precision and double precision floating point

numbers with example

2.B. What is system software? List functions of system software and explain how the

processor is shared between user program and OS routine.

Sol:

Software

 System software is a collection of programs that are executed as needed to perform

functions such as:

• Receiving and interpreting user commands.

• Entering and editing application programs and storing them as files in secondary storage

devices.

• Managing the storage and retrieval of files in secondary storage devices.

• Running standard application programs such as word processors, spreadsheets or games

with data supplied by users.

• Controlling I/O units to receive input information and produce output results.

• Translating programs from source form prepared by user into object form consisting of

machine instructions.

• Linking and running user written application programs with existing standard library

routines such as numerical computational packages.

A compiler is a system software program translates the high level language program in to a

suitable machine language program containing instructions such as Add and Load instructions.

 Operating system (OS) is a large program or actually a collection of routines that is used

to control the sharing of and interaction among various computer units as they execute application

programs. The OS routines perform the tasks required to assign computer resources to individual

application programs. These tasks include assigning memory and magnetic disk space to program

and data files, moving data between memory and disk units and handling I/O operations.

 Consider a system with one processor, one disk and one printer. When the application

program has been compiled from a high language form to machine language form and stored on

the disk. The first step is to transfer this file into the memory. When the transfer is complete,

execution of the program is started. Assume part of the program’s task involves reading a data file

from the disk in to the memory, performing some computations on the data and printing the results.

When the execution of the program reaches the point where the data file is needed, the program

requests the operating system to transfer the data file from the disk to the memory. The OS

performs this task and passes the execution control back to the application program, which then

proceeds to perform the required computation. When the computation is completed and the results

are ready to be printed, the application program again sends the request to the operating system.

An OS routine is then executed to cause the printer to print the results.

The execution control passes back and forth between application program and OS routines.

This sharing of processor execution time is illustrated by a time line diagram as shown in Fig

1.5. During the time period 𝑡0 to 𝑡1, an OS routine initiates the application loading program

from the disk to the memory, waits until the transfer is completed, and then passes execution

control to the application program. A similar pattern of activity occurs during period 𝑡2 to 𝑡3

and period 𝑡4 to 𝑡5 , when the operating system transfers the data file from the disk and print

the results. At 𝑡5, the operating system may load and execute another application program.

Notice that the disk and processor are idle during most of the time period 𝑡4 to 𝑡5. The operating

system manages the concurrent execution of several application programs to make best

possible use of computer resources. This pattern of concurrent execution is called

multiprogramming or multitasking.

2.C. Explain computer basic performance equation.

Basic Performance Equation

 Let 𝑇 be the processor time required to execute a program that has been prepared by some

high level language. The compiler generates machine level object program that corresponds to

source program. Assume that complete execution of the program requires the execution of 𝑁

machine language instructions. Suppose that the average number of basic steps needed to

execute one machine instruction is 𝑆, where each basic step is completed in one clock cycle. If

the clock rate is 𝑅 cycles per second, the program execution time is given by basic performance

equation.

𝑇 =
𝑁 × 𝑆

𝑅

 To achieve high performance, the value of 𝑇 must be reduced which can be done by

reducing 𝑁 and 𝑆, and increasing 𝑅. The value of 𝑁 is reduced if the source program is

compiled in fewer machine instructions. The value of 𝑆 is reduced if instructions have a smaller

number of basic steps to perform or if the execution of instructions are overlapped. Using a

higher-frequency clock increases the value of 𝑅 which means the time required to complete a

basic execution step is reduced.

3.A. What is an addressing mode? Explain any five types of addressing modes with

examples.

Sol:

Addressing Modes

 The different ways in which the location of an operand is specified in an instruction is

known as addressing modes. Variables and constants are the simplest data types. In assembly

language, a variable is represented by allocating a register or memory location to hold its value.

Thus, the value can be changed as needed using appropriate instructions.

• Register mode – The operand is the contents of a processor register; the name of the

register is given in the instruction.

• Absolute mode – The operand is in a memory location; the address of this location is given

explicitly in the instruction.

The instruction 𝑀𝑜𝑣𝑒 𝐿𝑂𝐶, 𝑅2

uses two modes. Processor registers are temporary storage locations where data in a register is

accessed using the Register mode. Address and data constants can be represented in assembly

language using the Immediate mode addressing where the operand is given explicitly in the

instruction. For example, the instruction

𝑀𝑜𝑣𝑒 200𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 , 𝑅0

Places the value 200 in register 𝑅0. A common convention is to use # in front of the immediate

value to indicate that this value is to be used as an immediate operand. Hence we can write the

instruction above in the form

𝑀𝑜𝑣𝑒 #200, 𝑅0

Constant values are used frequently in high-level language programs. The statements 𝐴 = 𝐵 + 6

contains the constant 6. Assuming that 𝐴 and 𝐵 have been declared as variables and may be

accessed using Absolute mode.

𝑀𝑜𝑣𝑒 𝐵, 𝑅1

𝐴𝑑𝑑 #6, 𝑅1

𝑀𝑜𝑣𝑒 𝑅1, 𝐴

Indirection and Pointers

 In indirect mode addressing, the instruction does not give the operand or the address

explicitly. Instead it provides information from which the memory address of the operand can be

determined. This address is referred to as effective address (EA) of the operand.

Indirect mode – The effective address of the operand is the contents of a register or memory

location whose address appears in the instruction.

 To execute the 𝐴𝑑𝑑 instruction in Fig 2.1a, the processor uses the value 𝐵, which is in the

register 𝑅1, as the effective address of the operand. It requests a read operation from the memory

to read the contents of location 𝐵. The value read is the desired operand, which the processor adds

to the contents of register 𝑅0. Indirect addressing through a memory location is also possible as

shown in Fig 2.1b. In this case, the processor first reads the contents of memory location 𝐴, then

request the second read operation using the value 𝐵 as a address to obtain the operand.

a) Through a general purpose register b) Through a memory location

Fig 2.1: Indirect addressing

 The register or the memory location that contains the address of the operand is called a

pointer.

Indexing and Arrays

 This addressing mode provides flexibility for accessing operands and is useful in dealing

with lists and arrays.

 Index mode – The effective address of the operand is generated by adding a constant value

to the contents of a register. This register is referred to as index register.

We indicate the Index mode symbolically as 𝑋(𝑅𝑖) where 𝑋 denotes the constant value

contained in the instruction and 𝑅𝑖 is the name of the register involved. The effective address of

the operand is given by

𝐸𝐴 = 𝑋 + [𝑅𝑖]

Fig 2.2 illustrates two ways of using Index mode. In Fig 2.2a, the index register 𝑅1 contains

the address of the memory location and the value 𝑋 defines an offset or displacement from this

address to the location where the operand is found.

Fig 2.2 a: Offset is given as a constant

 An alternate use is illustrated in Fig 2.2b. Here, the constant X corresponds to a memory

address and the content of the index register defines the offset to the operand. In either case, the

effective address is the sum of two values, one is given explicitly in the instruction and the other

is stored in the register.

Fig 2.2b: Offset is in the register

Relative Addressing

 Here the Program Counter (PC) is used instead of a general purpose register. In Relative

mode, the effective address is determined by the Index mode using program counter in place of

general-purpose register 𝑅𝑖. It’s most common use is to specify the target address in branch

instructions. An instruction such as

𝐵𝑟𝑎𝑛𝑐ℎ > 0 𝐿𝑂𝑂𝑃

causes program execution to go to the branch target location identified by the name LOOP if the

branch condition is satisfied. This location can be computed by specifying it as an offset from the

current value of the program counter. Suppose that Relative mode is used to generate the target

branch address LOOP in the Branch instruction of the program

𝐿𝑂𝑂𝑃: 𝐴𝑑𝑑 (𝑅2), 𝑅0

 𝐴𝑑𝑑 #4, 𝑅2

 𝐷𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑅1

 𝐵𝑟𝑎𝑛𝑐ℎ > 0 𝐿𝑂𝑂𝑃

 Assume that the four instructions of the loop body, starting at LOOP are located at memory

locations 1000, 1004, 1008 and 1012. Hence the updated contents of the PC at the time of branch

target address is generated will be 1016. To branch to location LOOP(1000), the offset needed is

𝑋 = −16.

Auto-increment mode – The effective address of the operand is the contents of a register specified

in the instruction. After accessing the operand, the contents of this register is automatically

incremented to point to the next item in the list. The Auto-increment mode is written as

(𝑅𝑖) +

 The increment is 1 for byte-sized operands, 2 for 16 bit operands and 4 for 32 bit

operands.

Auto-decrement mode – The content of a register specified in the instruction is first automatically

decremented and then used as effective address of the operand. In this mode, operands are accessed

in descending address order.

 These two modes can be used together to implement an important data structure called

stack.

3.B. Write a program to add ‘n’ number using indirect addressing mode.

Sol:

The programme is written to add n – numbers located in the memory starting at location

address labeled as List and the result is stored in the location labeled as SUM.

We assume a 32-bit word-length and Each number is assumed to be of 32 bits and each

general purpose register is of 32 bits

Move #List, R0

Move N, R1

Clear R2

Loop: ADD (R0), R2

ADD #4, R0

Decrement R1

Branch > 0 Loop

Move R2, SUM

3.C. Explain Stack Operations

Sol:

Stack operations are facilitated with Stack pointer. This register should not be used for

any other purpose. The stack grows in the direction of decreasing memory addresses. In

other words, Stack memory is always defined at the top of memory. It works on Last-in-

First-Out (LIFO) technique.

The general instructions used for stack operations are:

1) PUSH Reg/[MemoryLocation]

2) POP Reg/[Memory Location]

Suppose we define the Stack at 7018 i.e. Stack Pointer Register is currently Loaded with

7019 and if we execute a Push Instruction say,

 Eg: PUSH R0:

Step1: The Stack-Pointer Contents are auto-decremented to point to the previous word

address.

Step2: The contents of R0 is then saved on to this new Word address in memory pointed

out by Stack Pointer contents

Status of Registers and Mem-Locations
before Executing PUSH R0

Status of Registers and Mem-Locations
After Executing PUSH R0

SP := 7018 H SP= 7018-4=7014 H
(Assuming a Word-Length of 4-bytes)

R0:= 0024 H R0=0024 H

[7014]=0005 H [7014] = 0024 H

R3:=0060 H R3=0060 H

Now, if the POP instruction is executed say,

Eg: POP R3

Step1: The contents from the memory-location pointed out by Stack-Pointer i.e the

address 7014 is read and pasted into R3 register in the Processor

Step2: The contents of Stack-Pointer is then auto incremented to point to the next word

Status of Registers and Mem-Locations
before Executing POP R3

Status of Registers and Mem-Locations
After Executing POP R3

SP := 7014 H SP= 7018-4=7014 H
(Assuming a Word-Length of 4-bytes)

R0:= 0024 H R0=0024 H

[7014]=0024 H [7014] = 0024 H

R3:=0060 H R3=0024 H

4.A. What are Assembler Directives? Explain various assembler directives used in ALP.

Sol:

Assembler Directives

 The assembly language allows the programmer to specify other information needed to

translate the source program to object program. Suppose the name SUM is used to represent the

value 200. This fact may be conveyed to the assembler program through a statement such as

SUM EQU 200

 This statement does not denote the instruction that will be executed when the object

program is run. It informs the assembler that the name SUM should be replaced by the value 200

wherever it appears in the program. Such statements are assembler directives (or

commands) are used by the assembler when it translates the source program in to a object program.

ORIGIN is a directive that tells the assembler program where in the memory to place the data

block.

DATAWORD directive is used to inform the assembler to place the data in the address.

RESERVE directive declares a memory block and does not cause any data to be loaded in these

locations.

ORIGIN directive specifies that the instructions of an object program are to be loaded in the

memory starting at an address.

END is directive which indicates the end of the source program text. The END directive includes

the label START, which is the address of the location at which execution of the program is to

begin.

RETURN is an assembler directive that identifies the point at which the execution of the program

should be terminated.

4.B. Explain subroutine linkage with an example using linkage register.

Subroutines

 It is often necessary to perform a particular subtask many times on different data values.

Such subtask is called subroutine. When a program branches to a subroutine we call that it is

calling a subroutine. The instruction that performs this branch operation is called a Call instruction.

The subroutine is said to return to program that called it by executing a Return instruction. The

location where the calling program resumes execution is the location pointed by the updated PC

while the Call instruction being executed. Hence the contents of the PC must be saved by the Call

instruction to enable correct return to the calling program. This way in which the computer makes

it possible to call and return from subroutines is referred to as subroutine linkage method.

 The Call instruction is a special branch instruction that performs the following operations:

1. Store the contents of PC in the link register.

2. Branch to the target address specified by the instruction.

The Return instruction is a special branch instruction that performs the operation:

 Branch to the address contained in the link register.

 1000

 PC

 Link

 Call Return

Fig 2.6: Subroutine linkage using a link register

4.C. Explain the shift and rotate operations with examples.

Sol:

Shift and Rotate Instructions

204

204

5.A. Showing register configuration in I/O Interface, Explain program controlled

input/output with program.

5.B. Explain the registers involved in DMA Interface.

Sol:

Q5.C: What is an Interrupt? Explain interrupt hardware.

Sol:

 Suppose a program enters a wait loop in which it repeatedly

The routine executed in response to an interrupt request is called the Interrupt

Service Routine. Interrupts bear considerable resemblance to subroutine calls.

Assume that an interrupt request arrives during execution of instruction – ‘i’ as

shown in the above figure, then :

6. A. Explain the following method of handling interrupts from multiple devices:

i. Daisy chain method ii. Priority structure

6.b What is bus arbitration ? Explain centralized bus arbitration mechanism with a neat diagram.

C. Independent request

6c Explain the concept of vectored interrupt.

7.a. Explain internal organization of 16X8 memory chips.

7b. With a neat diagram, explain the working principle of magnetic disk.

The disk has two concentric tracks, each one has various division as

sectors for. Information keeps storing on the disk in the form of

magnetized regions within the sectors. The read/write head of disk

drive accesses the information by sensing the magnetic field. When

data allows to write to the disk, then read/write head creates a

magnetic field.

7c. With a neat diagram explain virtual memory organization.\

Virtual memory is the separation of logical memory from physical

memory. This separation provides large virtual memory for

programmers when only small physical memory is available.

Virtual memory is used to give programmers the illusion that they

have a very large memory even though the computer has a small main

memory. It makes the task of programming easier because the

programmer no longer needs to worry about the amount of physical

memory available.

8a. Explain the internal organization of 2MX8 DRAM memory chip with

a neat diagram.

 With a neat diagram, explain the organization of 2M X 8 dynamic

memory chip. Organized as 4kx4k array. 4096 cells in each row are

divided into 512 groups of 8. Each row can store 512 bytes. 12 bits

to select a row, and 9 bits to select a group of 8 bits in a row. Total of

21 bits. (2 MB). Reduce the number of bits by multiplexing row and

column addresses. First apply the row address, RAS signal

latches the row address. Then apply the column address, CAS

signal latches the address. Timing of the memory unit is

controlled by a specialized unit which generates RAS and CAS.

This is asynchronous DRAM. - All the contents of a row are

selected based on a row address.Particular byte is selected based

on the column address. - Add a latch at the output of the sense

circuits in each row. All the latches are loaded when the row is

selected. Different column addresses can be applied to select

and place different bytes on the data lines. - Consecutive sequence of

column addresses can be applied under the control signal CAS,

without reselecting the row. Allows a block of data to be transferred at

a much faster rate than random accesses. A small collection/group of

bytes is usually referred to as a block. This transfer capability is

referred to as the fast page mode feature.

8b. Explain a static RAM cell with a neat diagram.

8c. Discuss the concept of cache memory.

9a. Explain with the help of neat diagram single bus organization of a

data path inside a processor.

The operation or task that must perform by CPU are:

Fetch Instruction: The CPU reads an instruction from memory.

Interpret Instruction: The instruction is decoded to determine what action is required.

Fetch Data: The execution of an instruction may require reading data from memory or

I/O module.

Process data: The execution of an instruction may require performing some arithmetic

or logical operation on data.

Write data: The result of an execution may require writing data to memory or an I/O

module.

To do these tasks, it should be clear that the CPU needs to store some data

temporarily. It must remember the location of the last instruction so that it can know

where to get the next instruction. It needs to store instructions and data temporarily

while an instruction is begin executed. In other words, the CPU needs a small internal

memory. These storage location are generally referred as registers.

The major components of the CPU are an arithmetic and logic unit (ALU) and a control

unit (CU). The ALU does the actual computation or processing of data. The CU controls

the movement of data and instruction into and out of the CPU and controls the operation

of the ALU.

The CPU is connected to the rest of the system through system bus. Through system

bus, data or information gets transferred between the CPU and the other component of

the system. The system bus may have three components:

Data Bus:

Data bus is used to transfer the data between main memory and CPU.

Address Bus:

Address bus is used to access a particular memory location by putting the address of

the memory location.

Control Bus:

Control bus is used to provide the different control signal generated by CPU to different

part of the system. As for example, memory read is a signal generated by CPU to

indicate that a memory read operation has to be performed. Through control bus this

signal is transferred to memory module to indicate the required operation.

There are three basic components of CPU: register bank, ALU and Control Unit. There

are several data movements between these units and for that an internal CPU bus is

used. Internal CPU bus is needed to transfer data between the various registers and the

ALU.

9.b. Discuss the control sequence for the execution of the instruction

ADD (R3),R1.

9c. Describe the organization of hardwired control.

10. A. Explain multiple bus organizations with a neat diagram.

10.b What is microprogrammed control ? Explain the organization with

suitable diagrams and examples.

A micro-programmed control unit can be described as a simple logic circuit. We can use

it in two ways, i.e., it is able to execute each instruction with the help of generating control

signals, and it is also able to do sequencing through microinstructions. It will generate

the control signals with the help of programs. At the time of evolution of CISC architecture

in the past, this approach was very famous. The program which is used to create the

control signals is known as the "Micro-program". The micro-program is placed on the

processor chip, which is a type of fast memory. This memory is also known as the control

store or control memory.

A micro-program is used to contain a set of microinstructions. Each microinstruction or

control word contains different bit patterns. The n bit words are contained by each

microinstruction. On the basis of the bit pattern of a control word, every control signals

differ from each other.

Like the above, the instruction execution in a micro-programmed control unit is also

performed in steps. So for each step, the micro-program contains a control word/

microinstruction. If we want to execute a particular instruction, we need a sequence of

microinstructions. This process is known as the micro-routine. The image of a micro-

programmed control unit is described as follows. Here, we will learn the organization of

micro-program, micro-routine, and control word/ microinstruction.

