
Computer Organization and ARM Microcontrollers (21EC52)

VTU Solution- Dec23/Jan24

1. (a) With a neat diagram explain the operational concepts in a computer

highlighting the role of PC, MAR, MDR, IR.

1(b) Explain system software functions in computer.

• System software is a collection of programs that are executed as
needed to perform functions such as

• Receiving and interpreting user commands

• Managing the storage and retrieval of files in secondary storage
devices

• Running standard application programs such as word processors,
spreadsheets, or games, with data supplied by the user

• Controlling I/O units to receive input information and produce
output results

• Translating programs from source form prepared by the user into
object form consisting of machine instructions

• Linking and running user-written application programs with existing
standard library routines, such as numerical computation packages

• Application programs are usually written in a high-level programming
language, such as C, C++, Java, or Fortran, in which the programmer
specifies mathematical or text-processing operations.

• A system software program called a compiler translates the high-level
language program into a suitable machine language program.

• A large program or a collection of routines, that is used to control the
sharing of and interaction among various computer units is called
operating system (OS).

• The OS routines perform the tasks required to assign computer
resources to individual application programs.

• These task include assigning memory and magnetic disk space to
program and data files, moving data between memory and disk units,
and handling I/O operations.

1© Explain Computer basic performance equation.

2 (a) Explain the operation of DMA with neat diagram.

2. (b) With the neat diagram discuss implementation of interrupt priority

using individual request and acknowledge lines.

2 © Illustrate with a neat diagram, a computer with different interface standards.

3. (a) With a neat diagram explain the internal organization of 16*8 memory

chip.

3 (b) State and explain the types of read only memory and memory hierarchy.

4 (a) With a neat diagram explain the three bus organization of a data path.

• General purpose registers are combined into a single block called
registers.

• 3 ports,2 output ports –access two different registers and have their
contents on buses A and B

• Third port allows data on bus c during same clock cycle.

• Bus A & B are used to transfer the source operands to A & B inputs of
the ALU.

• ALU operation is performed.

• The result is transferred to the destination over the bus C.
• ALU may simply pass one of its 2 input operands unmodified to bus

C.

• The ALU control signals for such an operation R=A or R=B.

• Incrementer unit is used to increment the PC by 4.

• Using the incrementer eliminates the need to add the constant value
4 to the PC using the main ALU.

• The source for the constant 4 at the ALU input multiplexer can be
used to increment other address such as loadmultiple & storemultiple

4 (b) Explain the basic idea of pipelining and 4 stage pipeline structure.

Q.5: [a] With a neat diagram explain the four main hardware components of an ARM based embedded

device.

Sol:

Figure shows a typical embedded device based on an ARM core. Each box represents a feature or

function. The lines connecting the boxes are the buses carrying data. We can separate the device into

four main hardware components:

■ The ARM processor controls the embedded device. Different versions of the ARM processor are

available to suit the desired operating characteristics. An ARM processor comprises a core (the

execution engine that processes instructions and manipulates data) plus the surrounding components

that interface it with a bus. These components can include memory management and caches.

■ Controllers coordinate important functional blocks of the system. Two commonly found controllers

are interrupt and memory controllers.

■ The peripherals provide all the input-output capability external to the chip and are responsible for the

uniqueness of the embedded device.

■ A bus is used to communicate between different parts of the device.

Q.5 [b]:

Discuss ARM Design Philosophy

Sol:

The ARM Design Philosophy

There are a number of physical features that have driven the ARM processor design. First, portable

embedded systems require some form of battery power. The ARM processor has been specifically

designed to be small to reduce power consumption and extend battery operation—essential for

applications such as mobile phones and personal digital assistants (PDAs).

High code density is another major requirement since embedded systems have limited memory due to

cost and/or physical size restrictions. High code density is useful for applications that have limited on-

board memory, such as mobile phones and mass storage devices.

In addition, embedded systems are price sensitive and use slow and low-cost memory devices. For high-

volume applications like digital cameras, every cent has to be accounted for in the design. The ability to

use low-cost memory devices produces substantial savings.

Another important requirement is to reduce the area of the die taken up by the embedded processor.

For a single-chip solution, the smaller the area used by the embedded processor, the more available

space for specialized peripherals. This in turn reduces the cost of the design and manufacturing since

fewer discrete chips are required for the end product.

ARMhas incorporated hardware debug technology within the processor so that software engineers can

view what is happening while the processor is executing code. With greater visibility, software engineers

can resolve issues faster, which has a direct effect on the time to market and reduces overall

development costs.

The ARM core is not a pure RISC architecture because of the constraints of its primary application—the

embedded system. In some sense, the strength of the ARM core is that it does not take the RISC concept

too far. In today’s systems the key is not raw processor speed but total effective system performance

and power consumption.

Q5. [c]:

Explain the factors that make ARM instruction set suitable for embedded Applications.

Sol:

Instruction Set for Embedded Systems:

The ARM instruction set differs from the pure RISC definition in several ways that make the ARM

instruction set suitable for embedded applications:

■ Variable cycle execution for certain instructions—Not every ARM instruction executes in a single cycle.

For example, load-store-multiple instructions vary in the number of execution cycles depending upon

the number of registers being transferred. The transfer can occur on sequential memory addresses,

which increases performance since sequential memory accesses are often faster than random accesses.

Code density is also mproved since multiple register transfers are common operations at the start and

end of functions.

■ Inline barrel shifter leading to more complex instructions—The inline barrel shifter is a hardware

component that preprocesses one of the input registers before it is used by an instruction. This expands

the capability of many instructions to improve core performance and code density.

■ Thumb 16-bit instruction set—ARM enhanced the processor core by adding a second 16-bit instruction

set called Thumb that permits the ARM core to execute either 16- or 32-bit instructions. The 16-bit

instructions improve code density by about 30% over 32-bit fixed-length instructions.

■ Conditional execution—An instruction is only executed when a specific condition has been satisfied.

This feature improves performance and code density by reducing branch instructions.

■ Enhanced instructions—The enhanced digital signal processor (DSP) instructions were added to the

standard ARM instruction set to support fast 16×16-bit multiplier operations and saturation. These

instructions allow a faster-performing ARM processor in some cases to replace the traditional

combinations of a processor plus a DSP.

These additional features have made the ARM processor one of the most commonly used 32-bit

embedded processor cores.

Q6. [a]

Explain ARM core data flow model with a neat diagram

Sol:

A programmer can think of an ARM core as functional units connected by data buses, as shown in Figure

above, where, the arrows represent the flow of data, the lines represent the buses, and the boxes

represent either an operation unit or a storage area. The figure shows not only the flow of data but also

the abstract components that make up an ARM core.

Data enters the processor core through the Data bus. The data may be an instruction to execute or a

data item. Figure 2.1 shows a Von Neumann implementation of the ARM—data items and instructions

share the same bus. In contrast, Harvard implementations of the ARM use two different buses.

The instruction decoder translates instructions before they are executed. Each instruction executed

belongs to a particular instruction set.

The ARM processor, like all RISC processors, uses a load-store architecture. This means it has two

instruction types for transferring data in and out of the processor: load instructions copy data from

memory to registers in the core, and conversely the store instructions copy data from registers to

memory. There are no data processing instructions that directly manipulate data in memory. Thus, data

processing is carried out solely in registers.

Data items are placed in the register file—a storage bank made up of 32-bit registers. Since the ARM

core is a 32-bit processor, most instructions treat the registers as holding signed or unsigned 32-bit

values. The sign extend hardware converts signed 8-bit and 16-bit numbers to 32-bit values as they are

read from memory and placed in a register.

ARM instructions typically have two source registers, Rn and Rm, and a single result or destination

register, Rd. Source operands are read from the register file using the internal buses A and B,

respectively.

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register values Rn and Rm

from the A and B buses and computes a result. Data processing instructions write the result in Rd

directly to the register file. Load and store instructions use the ALU to generate an address to be held in

the address register and broadcast on the Address bus.

One important feature of the ARM is that register Rm alternatively can be preprocessed in the barrel

shifter before it enters the ALU. Together the barrel shifter and ALU can calculate a wide range of

expressions and addresses.

After passing through the functional units, the result in Rd is written back to the register file using the

Result bus. For load and store instructions the incrementer updates the address register before the core

reads or writes the next register value from or to the next sequential memory location. The processor

continues executing instructions until an exception or interrupt changes the normal execution flow.

Q6.[a]:

Explain the different processor modes provided by ARM-7

Sol:

Processor Modes: (Complete Register Set with Processor Modes is shown in figure below)

The processor mode determines which registers are active and the access rights to the cpsr register

itself. Each processor mode is either privileged or nonprivileged: A privileged mode allows full read-write

access to the cpsr. Conversely, a nonprivileged mode only allows read access to the control field in the

cpsr but still allows read-write access to the condition flags.

There are seven processor modes in total: six privileged modes (abort, fast interrupt request, interrupt

request, supervisor, system, and undefined) and one nonprivileged mode (user).

The processor enters abort mode when there is a failed attempt to access memory. Fast interrupt

request and interrupt request modes correspond to the two interrupt levels available on the ARM

processor. Supervisor mode is the mode that the processor is in after reset and is generally the mode

that an operating system kernel operates in. System mode is a special version of user mode that allows

full read-write access to the cpsr. Undefined mode is used when the processor encounters an instruction

that is undefined or not supported by the implementation. User mode is used for programs and

applications.

Figure shows all 37 registers in the register file. Of those, 20 registers are hidden from a program at

different times. These registers are called banked registers and are identified by the shading in the

diagram. They are available only when the processor is in a particular mode; for example, abort mode

has banked registers r13_abt, r14_abt and spsr_abt. Banked registers of a particular mode are denoted

by an underline character post-fixed to the mode mnemonic or _mode.

Every processor mode except user mode can change mode by writing directly to the mode bits of the

cpsr. All processor modes except system mode have a set of associated banked registers that are a

subset of the main 16 registers. A banked register maps one-to one onto a user mode register. If you

change processor mode, a banked register from the new mode will replace an existing register.

Q6. [b]:

1. Discuss with a neat diagram Von-Neumann architecture with cache

2. Hardware architecture with TCM

Sol:

The cache is a block of fast memory placed between main memory and the core. It allows for more

efficient fetches from some memory types. With a cache the processor core can run for the majority of

the time without having to wait for data from slow external memory.

ARM has two forms of cache. The first is found attached to the Von Neumann–style cores. It combines

both data and instruction into a single unified cache, as shown in Figure(A) below . For simplicity, we

have called the glue logic that connects the memory system to the AMBA bus logic and control.

(FIGURE -A) FIGURE- B

By contrast, the second form, attached to the Harvard-style cores, has separate caches for data and

instruction.

A cache provides an overall increase in performance but at the expense of predictable execution. But for

real-time systems it is paramount that code execution is deterministic— the time taken for loading and

storing instructions or data must be predictable. This is achieved using a form of memory called tightly

coupled memory (TCM). TCM is fast SRAM located close to the core and guarantees the clock cycles

required to fetch instructions or data—critical for real-time algorithms requiring deterministic behavior.

TCMs appear as memory in the address map and can be accessed as fast memory. An example of a

processor with TCMs is shown in Figure-B

Q-7 [a]:

Explain with neat diagram barrel shifter operation in ARM Processor.

Sol:

Barrel Shifter

In Example 3.1 we showed a MOV instruction where N is a simple register. But N can be

more than just a register or immediate value; it can also be a register Rm that has been

preprocessed by the barrel shifter prior to being used by a data processing instruction.

Data processing instructions are processed within the arithmetic logic unit (ALU).

A unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary

pattern in one of the source registers left or right by a specific number of positions before

it enters the ALU. This shift increases the power and flexibility of many data processing

operations.

There are data processing instructions that do not use the barrel shift, for example,

the MUL (multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add)

instructions.

Pre-processing or shift occurs within the cycle time of the instruction. This is particularly

useful for loading constants into a register and achieving fast multiplies or division by

a power of 2.

Barrel shifter and ALU.

To illustrate the barrel shifter we will take the example in Figure and add a shift operation to the move

instruction example. Register Rn enters the ALU without any preprocessing of registers. Figure shows

the data flow between the ALU and the barrel shifter.

Example

We apply a logical shift left (LSL) to register Rm before moving it to the destination register. This is the

same as applying the standard C language shift operator ≪ to the register. The MOV instruction copies

the shift operator result N into register Rd. N represents the result of the LSL operation described in

Table below.

PRE r5 = 5

r7 = 8

MOV r7, r5, LSL #2 ; let r7 = r5*4 = (r5 << 2)

POST r5 = 5

r7 = 20

The example multiplies register r5 by four and then places the result into register r7. The five different

shift operations that you can use within the barrel shifter are summarized in Table below.

Figure below illustrates a logical shift left by one. For example, the contents of bit 0 are shifted to bit 1.

Bit 0 is cleared. The C flag is updated with the last bit shifted out of the register. This is bit (32−y) of the

original value, where y is the shift amount. When y is greater than one, then a shift by y positions is the

same as a shift by one position executed y times.

Q7. [b]:

Explain with an example the concept of Semaphore using Swap Instruction

Sol:

A semaphore is a variable that controls access to a shared resource in an operating system. Semaphores

can be used to prevent multiple threads or processes from accessing a shared resource at the same time

Use of SWP and SWPB semaphore instructions:

The ARM instruction set includes two semaphore instructions, Swap (SWP) and Swap Byte (SWPB), that

are provided for process synchronization. Both instructions generate a load access and a store access to

the same memory location, such that no other access to that location is permitted between the load

access and the store access. This enables a memory semaphore to be loaded and altered without

interruption. These semaphore instructions do not provide a compare and conditional write facility. If

this is required, it must be done explicitly.

The ARM architecture has always had the SWP instruction for implementing semaphores to ensure

consistency in such environments. As the SoC has become more complex, however, certain aspects of

SWP cause a performance bottleneck in some instances. Recall that SWP is basically a “blocking”

primitive that locks the external bus of the processor and uses most of its bandwidth just to wait for a

resource to be released. In this sense the SWP instruction is considered “pessimistic”—no computation

can continue until SWP returns with the freed resource.

Swap Instruction:

The swap instruction is a special case of a load-store instruction. It swaps the contents of memory with

the contents of a register. This instruction is an atomic operation—it reads and writes a location in the

same bus operation, preventing any other instruction from reading or writing to that location until it

completes.

Q7. [c]: Develop an assembly language program to multiply two 16 bit nos.

Sol:

8. Explain the following with example:

i) MSR ii) MVN iii) TST iv) BIC

8.b Explain with an example forward and backward branch.

8c. Develop an assembly language program to find GCD of two numbers using conditional execution.

9a. Discuss with an example code density in thumb instruction set over ARM.

9 b Explain ARM thumb interworking.

9c. Explain with example thumb stack operations.

10a. Explain with an example the effect of using “char” and “short” as local variable types in ARM

processors.

10.b List the C compiler data type mapping for an ARM target with their implementation.

10. C With an example, compare the efficiencies of signed int and unsigned int with an example.

