Computer Organization and ARM Microcontrollers (21EC52)

VTU Solution- Dec23/Jan24

21EC52

Fifth Semester B.E. Degree Examination, Dec.2023/Jan.2024
ymputer Organization and Arm Microcontrollers

Max. Marks: 100

Q
é Note: Answer any FIVE full questions, choosing ONE full question from each module.
£ Module-1
8 1 a. With a neat diagram, discuss the operational concepts in a computer highlighting the role of
% PC, MAR, MDR and IR. (10 Marks)
52 b. Explain system software functions in computer. (06 Marks)
%; c. Explain computer basic performance equation. (04 Marks)
ig OR
2 2 a. Explain operation of DMA with neat diagram. (10 Marks)
2 é b. With a neat diagram, discuss implementation of interrupt priority using individual request
S eb and acknowledge lines. (06 Marks)
23 c. Illustrate with a neat diagram, a computer using different interface standards. (04 Marks)
Sz
2§ 3 a. With a neat diagram, explain the internal organization of 16 x 8 memory chip. (10 Marks)
5 g b. State and explain the types of read only memory and memory hierarchy. (10 Marks)
s O
05 OR
Pl 4 a. Witha neat diagram, explain the three bus organization of a datapath. (10 Marks)
% %:; b. Explain basic idea of pipelining and 4-stage pipeline structure. (10 Marks)
Z - Module-3
E‘ g 5 a. With a neat diagram, explain the four main hardware components of an ARM based
3 = embedded device. (08 Marks)
g2 b. Discuss ARM design philosophy. (06 Marks)
Z g c. Explain the factors that make ARM instruction set suitable for embedded applications.
&8 (06 Marks)
z2
53 OR
- 35 6 a. Explain ARM core data flow model with a neat diagram. (08 Marks)
5 b. Explain the different processor modes provided by ARM7. (06 Marks)
8 E‘ c. Discuss with a neat diagram:
et 1) Von Neumann architecture with cache
s 1) Harvard architecture with TCM. (06 Marks)
z
E Module-4
‘é 7 a. Explain with neat diagram, barrel shifter operation in ARM processor. (08 Marks)
£ b. Explain with an example the concept of semaphore using swap instruction. (06 Marks)
c. Develop an assembly language program to multiply two 16-bit numbers. (06 Marks)
1 of 2

10

g @

21ECS2

OR

Explain the following with example:

i) MSR i) MVN iii) TST iv) BIC. (08 Marks)
Explain with an example forward and backward branch. (06 Marks)
Develop an assembly language program to find GCD of two numbers using conditional
execution. (06 Marks)

Module-5

Discuss with an example code density in thumb instruction set over ARM. . (08 Marks)
Explain ARM-thumb interworking. (06 Marks)
Explain with example thumb stack operations. (06 Marks)

CMRIT LIBRARY

OR gANGALORE - 560 037
Explain with an example the effect of using ‘char’ and ‘short’” as local variable types in
ARM processor. (08 Marks)

List the C compiler data type mapping for an ARM target with their implementation.
(05 Marks)
With an example, compare the efficiencies of signed int and unsigned int with an example.
(07 Marks)

* kK ¥ ok

2 0f2

1. (a) With a neat diagram explain the operational concepts in a computer

highlighting the role of PC, MAR, MDR, IR.

BASIC OPERATIONAL CONCEPTS
An Instruction consists of 2 parts, 1) Operation code (Opcode) and 2) Operands.
| OPCODE | OPERANDS |
» The data/operands are stored in memaory.
» The individual instruction are brought from the memory to the processor.
+ Then, the processor performs the specified operation.
« Let us see a typical instruction
ADD LOCA, RO
* This instruction is an addition operation. The following are the steps to execute the instruction:
Step 1: Fetch the instruction from main-memory into the processor,
Step 2: Fetch the operand at location LOCA from main-memaory into the processor.
Step 3: Add the memory aperand (i.e. fetched contents of LOCA) to the contents of register RO,
Step 4: Store the result (sum) in RO.
* The same instruction can be realized using 2 instructions as:
Load LOCA, R1
Add R1, RO
* The following are the steps to execute the instruction:
Step 1: Fetch the instruction from main-memory into the processor.
Step 2: Fetch the operand at location LOCA from main-memaory into the register R1.
Step 3: Add the content of Register R1 and the contents of register RO,
Step 4: Store the result (sum) in RO.

MAIN PARTS OF PROCESSOR
+ The processor contains ALU, control-circuitry and many registers.
= The processor contains 'n’ general-purpose registers Ry through R,,_4.
» The IR holds the instruction that is currently being executed.
» The control-unit generates the timing-signals that determine when a given action is to take place.
* The PC caontains the memory-address of the next-instruction to be fetched & executed.
* During the execution of an instruction, the contents of PC are updated to point to next instruction.
+» The MAR holds the address of the memory-location to be accessed.
s The MDR contains the data to be written into or read out of the addressed location.
» MAR and MDR facilitates the communication with memory.
(IR - Instruction-Register, PC - Program Counter)
(MAR - Memory Address Register, MDR-> Memory Data Register)
STEPS TO EXECUTE AN INSTRUCTION
1) The address of first instruction (to be executed) gets loaded into PC.
2) The contents of PC (i.e. address) are transferred to the MAR & control-unit issues Read signal to

memaory.

3) After certain amount of elapsed time, the first instruction is read out of memory and placed into
MDR.

4) Next, the contents of MDR are transferred to IR. At this point, the instruction can be decoded &
executed.

5) To fetch an operand, it's address is placed into MAR & control-unit issues Read signal. As a result,
the operand is transferred from memory into MDR, and then it is transferred from MDR to ALU.

6) Likewise required number of operands is fetched into processor.

7) Finally, ALU performs the desired operation.

8) If the result of this operation is to be stored in the memory, then the result is sent to the MDR.

9) The address of the location where the result is to be stored is sent to the MAR and a Write cycle is
initiated.
10) At some point during execution, contents of PC are incremented to point to next instruction in the
program.

Main memory

Processor-memory interface

PC R
Control

' <—— Processor

R

a

n general purpose
registers

‘igure 1.2 Connection between the processor and the main memory.

1(b) Explain system software functions in computer.

. System software is a collection of programs that are executed as
needed to perform functions such as

- Receiving and interpreting user commands

- Managing the storage and retrieval of files in secondary storage
devices

- Running standard application programs such as word processors,
spreadsheets, or games, with data supplied by the user

- Controlling I/0O units to receive input information and produce
output results

- Translating programs from source form prepared by the user into
object form consisting of machine instructions

- Linking and running user-written application programs with existing
standard library routines, such as numerical computation packages

. Application programs are usually written in a high-level programming
language, such as C, C++, Java, or Fortran, in which the programmer
specifies mathematical or text-processing operations.

. A system software program called a compiler translates the high-level
language program into a suitable machine language program.

. A large program or a collection of routines, that is used to control the
sharing of and interaction among various computer units is called
operating system (OS).

. The OS routines perform the tasks required to assign computer
resources to individual application programs.

. These task include assigning memory and magnetic disk space to
program and data files, moving data between memory and disk units,
and handling I/O operations.

1© Explain Computer basic performance equation.

Basic Performance Equation

« [— processor time required to execute a program that has been
prepared in high-level language

« N — number of actual machine language instructions needed to
complete the execution (note: loop)

+« S —average number of basic steps needed to execute one
machine instruction. Each step completes in one clock cycle

» R —clock rate
« Note: these are not independent to each other

i Nx§
R

How to improve T7

Performance Measurement

SPEC - System Performance Evaluation
Corporation

Running time on the reference computer
Running time on the computer under test

SPEC rating =

|

n L
SPEC rating = (H SPEQ)
i=|
2 (a) Explain the operation of DMA with neat diagram.

DMA

« Think about the overhead in both polling and
interrupting mechanisms when a large block of data
need to be transferred between the processor and
the 1/0O device.

« A special control unit may be provided to allow
transfer of a block of data directly between an
external device and the main memory, without
continuous intervention by the processor — direct
memory access (DMA).

« The DMA controller provides the memory address
and all the bus signals needed for data transfer,
increment the memory address for successive
words, and keep track of the number of transfers.

DMA Procedure

« Processor sends the starting address, the number of
data, and the direction of transfer to DMA controller.

» Processor suspends the application program
requesting DMA, starts DMA transfer, and starts
another program.

« After the DMA transfer is done, DMA controller
sends an interrupt signal to the processor.

« The processor puts the suspended program in the
Runnable state.

DMA Register

31 30 1 0
Status and control
IRQ ._l | ‘ L Done
IE R/IW
Starting address
Word count

Registers in o DMA interface.

System

Main
Processor
meEmory
System bus
Disk/DMA DMA)
controller controller. Printer
Disk Disk Network
Interface

~_

Use of DMA controllers in o computer system.

2. (b) With the neat diagram discuss implementation of interrupt priority
using individual request and acknowledge lines.

Interrupt Nesting

s Simple solution: only accept one interrupt at a time, then disable
all others.

« Problem: some interrupts cannot be held too long.
» Priority structure

[1
! [INTRI INTRp
! -
! - . . .
i E Device | [_Demz see [- Device p
! i [
| $ INTAI INTAp
| jF 5 ,

Priority arbitration

circuit

Implementation of interrupt priority using individual inferruptrequest and
acknowledge lines.

2 © lllustrate with a neat diagram, a computer with different interface standards.

[FrocaEsary
b k-

Figure 4.38. An example of a computer system using different interface
standards.

The previous sections point out that there are several altemative designs for the bas of
a compater. This variety means that LA devices fitted with an interface circuit saitable
for one compater may not be usable with other computers. A different interface may
have to be designed for every combination of LMD device and computer, resalting in
many different interfaces. The most practical solution is to develop standard interface
signals and protocols.

It is helpful at this point to anderstand how a computer system is put together.
A typical personal computer, for example, inclodes a printed circuit board called the
motherboard. This board houses the processor chip, the main memory, and some LA
interfaces. It also has a few connectors into which additional interfaces can be plogged.

The processor bas is the bus defined by the signals on the processor chip itsclf.
Devices that reguire a very high speed connection to the processor, such as the main
memory, may be connected directly to this bus. For ebectrical reasons, only a few devices
can be connected in this manmer. The motherboard usually provides another bus that
can support more devices., The two buses are interconnected by a circuit, which we
will call a bridge, that translates the signals and protocols of one bus inio those of
the other. Devices connected to the expansion bus appear to the processor as if they
were connected directly to the processor’s own bos. The only difference is that the
bridge circuit introduces a small delay in data transfers between the processor and
those devices.

It is not possible to define a uniform standard for the processor bus. The structure
of this bus is closely tied to the architecture of the progessor. It is also dependent
on the electrical characteristics of the processor chip, such as its clock speed. The
expansion bas is not subject to these limitations, and therefore it can use a standardized
signaling scheme. A number of standards have been developed. Some have evolved by
default, when a particular design became commercially seccessful. For example, TBM

developed a bus they called [SA (Industry Standard Architecture) for their personal
computer known at the time as PC AT, The popularity of that computer led to other
manufacturers producing IS A-compatible interfaces for their 110 devices, thus making
[SA inko & de facto standard.

Some standards have been developed through industrial cooperative efforts, even
amofg competing companies driven by their common self-interest in having compatible
products. In some cases, orgenizations such as the IEEE (Institute of Electrical and
Electronics Engineers), ANSI (American National Standards Institute), or intemational
bodies such as [SO (Intemational Standards Organization) have blessed these standards
and given them an official status.

In this section, we present three widely used bus standards, PCI (Peripheral Com-
ponent Interconnect), SCSI (Small Computer Sysiem Interface), and USB (Universal
Serial Bus), The way these standards are used in a typical computer system is illus-
trated in Figure 4.38. The PCI standard defines an expansion bus on the motherboard.
SCSI and USB are used for connecting additional devices, both inside and outside the

3. (a) With a neat diagram explain the internal organization of 16*8 memory
chip.

b4 b3
W, |
. =
Ag —= W, 1
AL =1 Address
decoder
ﬁ.z -

Aﬁ —— F
Wis

L)

H

circuit

Sense/Write I

|

'

Data input foutput lines: b,

!

Memory
cells

Sense/Writ I Sense/Write -~ R/W
clrcun circu
.-_ m
‘ Lr
by by

Figure 5.2 Organization of bit cells in o memory chip.

Semiconductor RAM Memories

e Semiconductor memories are available in a wide range
of speeds.

e Their cycle times range from 100 ns to less than 10 ns.

e When first introduced in the late 1960s, they were much
more expensive than the magnetic-core memories they
replaced.

e Because of rapid advances in VLSI (Very Large Scale
Integration) technology, the cost of semiconductor
memories has dropped dramatically.

e As aresult, they are now used almost exclusively in
implementing memories.

Internal Organization of
Memory Chips

Each memory cell can hold one bit of information.

Memory cells are organized in the form of an
array.

One row is one memory word.

All cells of a row are connected to a common line,
known as the word line.

Word line is connected to the address decoder.

The cells in each column are connected to a
Sense/Write circuit by two bit lines.

The Sense/Write circuits are connected to the data
input/output lines of the chip.

e Figure 5.2 is an example of a very small memory

circuit consisting of 16 words of 8 bits each.

e This is referred to as a 16 x 8 organization.
e The data input and the data output of each

Sense/Write circuit are connected to a single
bidirectional data line that can be connected to
the data lines of a computer.

e Two control lines, R/W and CS, are provided.

e The R/W (Read/Write) input specifies the required

operation, and the CS (Chip Select) input selects a
given chip in a multichip memory system.

3 (b) State and explain the types of read only memory and memory hierarchy.

Memory Hierarchy

Processor

Registers
Increasing Increasing Increasing
size speed cost per bit

Pri
K b

| Magnetic disk
secondary
memory

Figure 5.13 Memory hierarchy.

5.3 READ-ONLY MEMORIES

Both SRAM and DRAM chips are volatile, which means that they lose the stored
information if power is mmed off. There are many applications that need memory
devices which retain the stored information if power is tuned off. For example, in
a typical computer a hard disk drive is used to store a large amount of information,

including the operating system software. When a computer is turned on, the operat-
ing system software has to be loaded from the disk into the memary. This requires
execution of a program that “boots” the operating system. Since the boot program is
quite large, most of it is stored on the disk. The processor must execute some instruc-
tions that Joad the boot program into the memory. If the enfire memory consisted of
only volatile memory chips, the processor would have no means of accessing these
instructions. A practical solation is to provide a small amount of noavolatile memory
that holds the instructions whose execution results in loading the boot program from
the disk. :

Nonvolatile memory is used extensively in embedded systems, which are presented
in Chapter 9. Such systems typically do not use disk storage devices. Their programs
are stored in nonvolatile semiconductor memory devices.

Different types of nonvolatile memory have been developed. Generally, the contents
of such memory can be read as if they were SRAM or DRAM memories. But, a special
writing process is needed to place the information into this memory. Since its normal
operation involves only reading of stored data, a memory of this type is called read-only
memory (ROM).

231 ROM

Figure 5.12 shows a possible configuration for a ROM cell. A logic value 0 is stored in
the cell if the transistor is connected to ground at point P, otherwise, a | is stored. The
bit line is connected through a resistor to the power supply. To read the state of the cell,
the word line is activated. Thus, the transistor switch is closed and the voltage on the
bit line drops to near zero if there is a connection between the transistor and ground. If
there is no connection to ground, the bit line remains at the high voltage, indicating a
1. A zense circuit at the end of the bit line generates the proper output value. Data are
written into a ROM when it is manufactured.

Some ROM designs allow the data to be loaded by the user, thus providing a pro-
grammable ROM (PROM). Programmability is achieved by inserting a fuse at point
P in Figure 5.12. Before it is programmed, the memory contains all (is. The user can
insert 15 at the required locations by burning out the fuses at these locations using
hgh-current palses. Of course, this process is irreversible.

PROMs provide flexibility and convenience not available with ROMs. The latter
are economically attractive for storing fixed programs and data when high volumes
of ROMs are produced. Howewer, the cost of preparing the masks needed for storing
a particilar information pattern in ROMs makes them very expensive when only a
small number are required. In this case, PROMs provide a faster and considerably less
expensive approach because they can be programmed directly by the user.

533 EPROM

Another type of ROM chip allows the stored data to be erased and new data to be
loaded. Such an erasable, reprogrammable ROM is usually called an EPROM. It pro-
vides considerable flexibility during the development phase of digital systems. Since
EPROM: are capable of retaining stored information for a long time, they can be used
in place of ROMs while software is being developed. In this way, memory changes and
updates can be easily made.

An EPROM cell has a structure similar to the ROM cell in Figure 5.12. In an
EPROM cell, however, the connection to ground is always made at point P and a
special transistor is used, which has the ability to function either as a normal transistor
or as a disabled transistor that is always turned off. This transistor can be programmed
to behave as a permanently open switch, by injecting charge into it that becomes trapped
inside. Thus, an EPROM cell can be used to construct a memory in the same way as
the previously discossed ROM cell.

The important advantage of EPROM chips is that their contents can be erased and
reprogrammed. Erasure requires dissipating the charges trapped in the transistors of
memory cells; this can be done by exposing the chip to ultraviolet light. For this reason,
EPROM chips are mounted in packages that have transparent windows.

4

(a) With a neat diagram explain the three bus organization of a data path.

Multiple-Bus Organization

LT Bus B Bus
- I
I —
. |
| |
- | [— N
| i - Allow the contents of two
i | comamees different registers to be

accessed simultaneously and

I - have their contents placed on
o buses A and B.
- | « Allow the data on bus C to

P— | be loaded into a third register
e ! during the same clock cycle.

« Incrementer unit.

« ALU simply passes one of its
two input operands
unmodified to bus C

. S EE——S ———

198

Koy Sxn Bsklrre
s lisew lss

U control signal: R=A or R=B

Figurs F.B Thenetus cigan sates of e dowpob
General purpose registers are combined into a single block called
registers.

3 ports,2 output ports —access two different registers and have their
contents on buses A and B

Third port allows data on bus ¢ during same clock cycle.

Bus A & B are used to transfer the source operands to A & B inputs of
the ALU.

ALU operation is performed.

The result is transferred to the destination over the bus C.
ALU may simply pass one of its 2 input operands unmodified to bus
C.

The ALU control signals for such an operation R=A or R=B.
Incrementer unit is used to increment the PC by 4.

. Using the incrementer eliminates the need to add the constant value
4 to the PC using the main ALU.

. The source for the constant 4 at the ALU input multiplexer can be
used to increment other address such as loadmultiple & storemultiple

4 (b) Explain the basic idea of pipelining and 4 stage pipeline structure.

Clock cycle I 2 3 4 5 3] 7
Instruction

I F Iy E, w;

h F | Do | B2 | W,

Iy F; Dy By W

L Fy Dy E, W,

(2) Instruction execution divided info four steps

Interstape uffers

D : Decode
F: Feich instruction E: Execute W Write
instruction and feich operation resulls
operands

Bl B2 B3

{b) Hardware organization
Figure 8.2 A 4-stoge pipeline,

8.1 BasiC CONCEPTS

The speed of execution of programs is influenced by many factors. One way to improve
performance is to use faster circuit technology to build the processor and the main
memory. Another possibility is to arrange the hardware so that more than one operation
can be performed at the same time. In this way, the number of operations performed per
second is increased even though the elapsed time needed to perform any one operation
is not changed.

We have encountered concurrent activities several times before. Chapter 1 in-
trodoced the concept of multiprogramming and explaimed how it is possible for 10
transfers and computational activities to proceed simultaneously. DMA devices make
this possible because they can perform 10 transfers independently once these transfers
are initiated by the processor.

Fipelining is a particularly effective way of organizing concument activity in a
computer system. The basic idea is very simple. It is frequently encountered in manu-
factuning plants, where pipelining is commonly known as an assembly-line operation.
Readers are ondoubtedly familiar with the assembly line used in car manufacturing.
The first station in an assembly line may prepare the chassis of a car, the next station
adds the body, the next one installs the engine, and s0 on. While one groop of workers
15 installing the engine on one car, another group is fitting a car body on the chassis
of another car, and yet another group is preparing a new chassis for a third car. It may
take days to complete work on a given car, but it is possible to have a new car rolling
off the end of the assembly line every few minutes.

Consider how the idea of pipelining can be used in a computer. The processor
executes a program by fetching and executing instroctions, one after the other. Let F;
and E; refer to the fetch and execute steps for instruction I;. Execution of a program
consists of a sequence of fetch and execute steps, as shown in Figare B.1a.

Now consider a computer that has two separate hardware units, one for fetching
instructions and another for executing them, as shown in Figure 8.15. The instruction
fetched by the fetch anit is deposited in an intermediate storage buffer, B1. This buffer
is peeded to enable the execotion unit to execute the instruction while the fetch anit is
fetching the next instruction. The results of execution are deposited in the destination
location specified by the instruction. For the purposes of this discussion, we assume
that both the source and the destination of the data operated on by the instructions are
inside the block labeled “Execution unit”

L Iy L
A Y

F E, Fa Ey A Ey

{a) Sequential execution

Instruction .
—.-:.: | Execution
f1mmcit D unit

e Time
Clock cycle 1 2 3 4
Instraction
5 F, E;
[} Fy Ey
L F Ey

(c) Pipalined exacution

Figure 8.1 Basic idea of instruction pipelining.

Q.5: [a] With a neat diagram explain the four main hardware components of an ARM based embedded

device.
Sol:
ROM
ARM — SRAM
processor FLASHROM
4[Memory com.roller}
— DRAM
[Interrupt controller] (N
kAI—lB-exlema] I:|r1dgc:J External bus

| AHB arbiter II

[AHB-APB bridge]

- Ethernet Ethernet
Real-time clock]i »
physical
4| Counter/timers | driver
Console ——| Serial UARTS =

oy

[ARM J [Control]ers} [Periphera]s) Bus

An example of an ARM-based embedded device, a microcontroller.

Figure shows a typical embedded device based on an ARM core. Each box represents a feature or
function. The lines connecting the boxes are the buses carrying data. We can separate the device into
four main hardware components:

m The ARM processor controls the embedded device. Different versions of the ARM processor are
available to suit the desired operating characteristics. An ARM processor comprises a core (the
execution engine that processes instructions and manipulates data) plus the surrounding components
that interface it with a bus. These components can include memory management and caches.

m Controllers coordinate important functional blocks of the system. Two commonly found controllers
are interrupt and memory controllers.

m The peripherals provide all the input-output capability external to the chip and are responsible for the
uniqueness of the embedded device.

m A bus is used to communicate between different parts of the device.

Q.5 [b]:

Discuss ARM Design Philosophy

Sol:
The ARM Design Philosophy

There are a number of physical features that have driven the ARM processor design. First, portable
embedded systems require some form of battery power. The ARM processor has been specifically
designed to be small to reduce power consumption and extend battery operation—essential for
applications such as mobile phones and personal digital assistants (PDAs).

High code density is another major requirement since embedded systems have limited memory due to
cost and/or physical size restrictions. High code density is useful for applications that have limited on-
board memory, such as mobile phones and mass storage devices.

In addition, embedded systems are price sensitive and use slow and low-cost memory devices. For high-
volume applications like digital cameras, every cent has to be accounted for in the design. The ability to
use low-cost memory devices produces substantial savings.

Another important requirement is to reduce the area of the die taken up by the embedded processor.
For a single-chip solution, the smaller the area used by the embedded processor, the more available
space for specialized peripherals. This in turn reduces the cost of the design and manufacturing since
fewer discrete chips are required for the end product.

ARMhas incorporated hardware debug technology within the processor so that software engineers can
view what is happening while the processor is executing code. With greater visibility, software engineers
can resolve issues faster, which has a direct effect on the time to market and reduces overall
development costs.

The ARM core is not a pure RISC architecture because of the constraints of its primary application—the
embedded system. In some sense, the strength of the ARM core is that it does not take the RISC concept
too far. In today’s systems the key is not raw processor speed but total effective system performance
and power consumption.

Q5. [c]:

Explain the factors that make ARM instruction set suitable for embedded Applications.

Sol:
Instruction Set for Embedded Systems:

The ARM instruction set differs from the pure RISC definition in several ways that make the ARM
instruction set suitable for embedded applications:

m Variable cycle execution for certain instructions—Not every ARM instruction executes in a single cycle.
For example, load-store-multiple instructions vary in the number of execution cycles depending upon
the number of registers being transferred. The transfer can occur on sequential memory addresses,
which increases performance since sequential memory accesses are often faster than random accesses.
Code density is also mproved since multiple register transfers are common operations at the start and
end of functions.

m Inline barrel shifter leading to more complex instructions—The inline barrel shifter is a hardware
component that preprocesses one of the input registers before it is used by an instruction. This expands
the capability of many instructions to improve core performance and code density.

m Thumb 16-bit instruction set—ARM enhanced the processor core by adding a second 16-bit instruction
set called Thumb that permits the ARM core to execute either 16- or 32-bit instructions. The 16-bit
instructions improve code density by about 30% over 32-bit fixed-length instructions.

m Conditional execution—An instruction is only executed when a specific condition has been satisfied.
This feature improves performance and code density by reducing branch instructions.

m Enhanced instructions—The enhanced digital signal processor (DSP) instructions were added to the
standard ARM instruction set to support fast 16 X 16-bit multiplier operations and saturation. These
instructions allow a faster-performing ARM processor in some cases to replace the traditional
combinations of a processor plus a DSP.

These additional features have made the ARM processor one of the most commonly used 32-bit
embedded processor cores.

Q6. [a]

Explain ARM core data flow model with a neat diagram

Sol:

Data
| - Instruction
" | decoder
{ Sign e:{tendJ
Write Read
)
Register file Rd
rO-ri5 Result
A lB Acc
Y i k)
[Barrel shifter)
MAC
v YN
& ALU
|
[Address register] =
l = [Incrementer]
Address

ARM core datatflow model.

A programmer can think of an ARM core as functional units connected by data buses, as shown in Figure
above, where, the arrows represent the flow of data, the lines represent the buses, and the boxes

represent either an operation unit or a storage area. The figure shows not only the flow of data but also
the abstract components that make up an ARM core.

Data enters the processor core through the Data bus. The data may be an instruction to execute or a
data item. Figure 2.1 shows a Von Neumann implementation of the ARM—data items and instructions
share the same bus. In contrast, Harvard implementations of the ARM use two different buses.

The instruction decoder translates instructions before they are executed. Each instruction executed
belongs to a particular instruction set.

The ARM processor, like all RISC processors, uses a load-store architecture. This means it has two
instruction types for transferring data in and out of the processor: load instructions copy data from
memory to registers in the core, and conversely the store instructions copy data from registers to
memory. There are no data processing instructions that directly manipulate data in memory. Thus, data
processing is carried out solely in registers.

Data items are placed in the register file—a storage bank made up of 32-bit registers. Since the ARM
core is a 32-bit processor, most instructions treat the registers as holding signed or unsigned 32-bit
values. The sign extend hardware converts signed 8-bit and 16-bit numbers to 32-bit values as they are
read from memory and placed in a register.

ARM instructions typically have two source registers, Rn and Rm, and a single result or destination
register, Rd. Source operands are read from the register file using the internal buses A and B,
respectively.

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register values Rn and Rm
from the A and B buses and computes a result. Data processing instructions write the result in Rd
directly to the register file. Load and store instructions use the ALU to generate an address to be held in
the address register and broadcast on the Address bus.

One important feature of the ARM is that register Rm alternatively can be preprocessed in the barrel
shifter before it enters the ALU. Together the barrel shifter and ALU can calculate a wide range of
expressions and addresses.

After passing through the functional units, the result in Rd is written back to the register file using the
Result bus. For load and store instructions the incrementer updates the address register before the core
reads or writes the next register value from or to the next sequential memory location. The processor
continues executing instructions until an exception or interrupt changes the normal execution flow.

Q6.[a]:
Explain the different processor modes provided by ARM-7
Sol:

Processor Modes: (Complete Register Set with Processor Modes is shown in figure below)

r0

ri

r2

r3

rd

rs5 Fast

0 interrupt

P request

r8 r8_fiq

r9 r9_fig

ri0 rl0_fig

w11 r11_fig Irfrerrupf .

B 12_fiq request Supervisor Undefined Abort

ri3 sp ri3_fig ri3_irg ri3_sve r13_undef ri3_abt
rid lr rld_fig rid_irq rid_sve ri4 _undef ri4_abt
ris pc

cpsr

- spsr_fig spsr_irq spsr_sve | |spsr_undef spsr_abt

Complete ARM register set.

The processor mode determines which registers are active and the access rights to the cpsr register
itself. Each processor mode is either privileged or nonprivileged: A privileged mode allows full read-write
access to the cpsr. Conversely, a nonprivileged mode only allows read access to the control field in the
cpsr but still allows read-write access to the condition flags.

There are seven processor modes in total: six privileged modes (abort, fast interrupt request, interrupt
request, supervisor, system, and undefined) and one nonprivileged mode (user).

The processor enters abort mode when there is a failed attempt to access memory. Fast interrupt
request and interrupt request modes correspond to the two interrupt levels available on the ARM
processor. Supervisor mode is the mode that the processor is in after reset and is generally the mode
that an operating system kernel operates in. System mode is a special version of user mode that allows
full read-write access to the cpsr. Undefined mode is used when the processor encounters an instruction
that is undefined or not supported by the implementation. User mode is used for programs and
applications.

Figure shows all 37 registers in the register file. Of those, 20 registers are hidden from a program at
different times. These registers are called banked registers and are identified by the shading in the
diagram. They are available only when the processor is in a particular mode; for example, abort mode
has banked registers r13_abt, r14_abt and spsr_abt. Banked registers of a particular mode are denoted
by an underline character post-fixed to the mode mnemonic or _mode.

Every processor mode except user mode can change mode by writing directly to the mode bits of the
cpsr. All processor modes except system mode have a set of associated banked registers that are a
subset of the main 16 registers. A banked register maps one-to one onto a user mode register. If you
change processor mode, a banked register from the new mode will replace an existing register.

Q6. [b]:

1. Discuss with a neat diagram Von-Neumann architecture with cache
2. Hardware architecture with TCM

Sol:

The cache is a block of fast memory placed between main memory and the core. It allows for more
efficient fetches from some memory types. With a cache the processor core can run for the majority of
the time without having to wait for data from slow external memory.

ARM has two forms of cache. The first is found attached to the Von Neumann—style cores. It combines
both data and instruction into a single unified cache, as shown in Figure(A) below . For simplicity, we
have called the glue logic that connects the memory system to the AMBA bus logic and control.

[ARM core J

[ARM core]
I

Logic and control)
[Logic and control J

1
Instruction|
| Gomems) — :
T : Main memory @
(AMBA bus interface umt) AMBA bus interface unit Main memory

Unified cache

On-chip AMBA bus

D+."

On-chip AMBA bus

A simplified Von Neumann architecture with cache. A simplified Harvard architecture with TCM.

(FIGURE -A) FIGURE- B

By contrast, the second form, attached to the Harvard-style cores, has separate caches for data and
instruction.

A cache provides an overall increase in performance but at the expense of predictable execution. But for
real-time systems it is paramount that code execution is deterministic— the time taken for loading and
storing instructions or data must be predictable. This is achieved using a form of memory called tightly
coupled memory (TCM). TCM is fast SRAM located close to the core and guarantees the clock cycles
required to fetch instructions or data—critical for real-time algorithms requiring deterministic behavior.
TCMs appear as memory in the address map and can be accessed as fast memory. An example of a
processor with TCMs is shown in Figure-B

Q-7 [a]:

Explain with neat diagram barrel shifter operation in ARM Processor.

Sol:

Barrel Shifter

In Example 3.1 we showed a MOV instruction where N is a simple register. But N can be
more than just a register or immediate value; it can also be a register Rm that has been
preprocessed by the barrel shifter prior to being used by a data processing instruction.

Data processing instructions are processed within the arithmetic logic unit (ALU).

A unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary
pattern in one of the source registers left or right by a specific number of positions before
it enters the ALU. This shift increases the power and flexibility of many data processing
operations.

There are data processing instructions that do not use the barrel shift, for example,

the MUL (multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add)
instructions.

Pre-processing or shift occurs within the cycle time of the instruction. This is particularly
useful for loading constants into a register and achieving fast multiplies or division by

a power of 2.

W

No pre-processing
Pre-processing

AI]lthT.lL logic unit

Barrel shifter and ALU.

Barrel shifter and ALU.

To illustrate the barrel shifter we will take the example in Figure and add a shift operation to the move
instruction example. Register Rn enters the ALU without any preprocessing of registers. Figure shows
the data flow between the ALU and the barrel shifter.

Example

We apply a logical shift left (LSL) to register Rm before moving it to the destination register. This is the
same as applying the standard C language shift operator « to the register. The MOV instruction copies
the shift operator result N into register Rd. N represents the result of the LSL operation described in
Table below.

PREr5=5

r7=8

MOV r7, r5, LSL#2 ; let r7 =r5*%4 = (r5 << 2)
POST r5=5
r7=20

The example multiplies register r5 by four and then places the result into register r7. The five different
shift operations that you can use within the barrel shifter are summarized in Table below.

Figure below illustrates a logical shift left by one. For example, the contents of bit 0 are shifted to bit 1.
Bit 0 is cleared. The C flag is updated with the last bit shifted out of the register. This is bit (32—y) of the
original value, where y is the shift amount. When y is greater than one, then a shift by y positions is the
same as a shift by one position executed y times.

Bit Bit Bit
31 2 0

——————— (0) = oxs0000004
Condition Bags

31; /

L —

D @én@wmm

Condition flags
updated when
S is present

Condition Bags

Logical shift left by one.

Q7. [b]:

Explain with an example the concept of Semaphore using Swap Instruction

Sol:

A semaphore is a variable that controls access to a shared resource in an operating system. Semaphores
can be used to prevent multiple threads or processes from accessing a shared resource at the same time

Use of SWP and SWPB semaphore instructions:

The ARM instruction set includes two semaphore instructions, Swap (SWP) and Swap Byte (SWPB), that
are provided for process synchronization. Both instructions generate a load access and a store access to

the same memory location, such that no other access to that location is permitted between the load
access and the store access. This enables a memory semaphore to be loaded and altered without
interruption. These semaphore instructions do not provide a compare and conditional write facility. If
this is required, it must be done explicitly.

The ARM architecture has always had the SWP instruction for implementing semaphores to ensure
consistency in such environments. As the SoC has become more complex, however, certain aspects of
SWP cause a performance bottleneck in some instances. Recall that SWP is basically a “blocking”
primitive that locks the external bus of the processor and uses most of its bandwidth just to wait for a
resource to be released. In this sense the SWP instruction is considered “pessimistic’—no computation
can continue until SWP returns with the freed resource.

Swap Instruction:

The swap instruction is a special case of a load-store instruction. It swaps the contents of memory with
the contents of a register. This instruction is an atomic operation—it reads and writes a location in the
same bus operation, preventing any other instruction from reading or writing to that location until it
completes.

Syntax: SWP{B}{<cond>} Rd,Rm,[Rn]

SWP | swap a word between memory and a register | tmp =mem32[Rn]
mem32[Rn]=Rm
Rd=tmp

SWPB | swap a byte between memory and a register | tmp =mem8[Rn]|
mem8[Rn]=Rm
Rd=tmp

Swap cannot be interrupted by any other instruction or any other bus access. We say
the system “holds the bus™ until the transaction is complete.

The swap instruction loads a word from memory into register r0and overwrites the memory
with register rl.

PRE mem32[0x9000] = 0x12345678

r0 = 0x00000000
rl = 0x11112222
r2 = 0x00009000

SWP ro, rl1, [r2]

POST mem32[0x9000] = 0x11112222
r0 = 0x12345678
rl = 0x11112222
rZ = 0x00009000

This instruction is particularly useful when implementing semaphores and mutual
exclusion in an operating system. You can see from the syntax that this instruction can also
have a byte size qualifier B, so this instruction allows for both a word and a byte swap.

This example shows a simple data guard that can be used to protect data from being written
by another task. The SWP instruction “holds the bus™ until the transaction is complete.

spin
MoV rl, =semaphore
MoV r2, #l
SWP r3, r2, [rl] ; hold the bus until complete
CMP r3, #1
BEQ spin

The address pointed to by the semaphore either contains the value 0 or 1. When the
semaphore equals 1, then the service in question is being used by another process. The
routine will continue to loop around until the service is released by the other process—in
other words, when the semaphore address location contains the value 0.

Q7. [c]: Develop an assembly language program to multiply two 16 bit nos.

Sol:

Program to multiply two 16 bit numbers

R1 = 0x1234 ObOOO1 O0O10 0011 0100 LDR r1, ~0x1234
R2 - 0x2345 = 0b0O0O10 0011 0100 0101 LDR 12, ~0x2345

R3 = R1 7 R2 MUL 13, rl, r2
Ox1234 = 0x2345
oB04
48D0x
369Cxx
2468xxx
2820404

AREA MULTIPLY, CODE, READONLY
ERTRY
START

LOR i, =Uxiiii

LOR 22, «QxJ345%5

M i

NO¥

AT

wWr

jran

8. Explain the following with example:
i) MSR i) MVN iii) TST iv) BIC

0 MSR

» Transter the contents of a register into the cpsr or
SpSr

O Syntax

. MRS{<cond>} Rd, <cpsr | spsr>

s MSR{<cond>} <cpsr | spsr>_<fields>, Rm

. MSR{<cond>} <cpsr | spsr>_<fields>, #immediate
O Field: any combination of

= Flags: [24:31]

= Status: [16:23]

= eXtension[8:15]

= Control[0:7]

0 MVN : move (negated)
m MVNTO, rl; rO=NOT(rl)=~ (r1)

o [IST : bit-wise AND test
m TISTrO, r1; compute (rO AND r1)and set NZCV

0 TST : bit-wise AND test
m TISTrO, r1; compute (rO AND r1)and set NZCV

O TEQ : bit-wise exclusive-or test
m TEQTO, r1; compute (rO EOR rl)and set NZCV

O BIC : bit clear
w BIC O, r1,r2; rO=rl1 & Not(r2)

m PRE: r1 =0bll111,r2=0b0101
w BIC O, r1,r2 ;r0=r1 AND (NOT(r2))

m POST: r0=0b1010

8.b Explain with an example forward and backward branch.

Branch Instructions (Cont.)

O Syntax
= B{<cond>}lable
m Bl{<cond>}lable

O B : branch
= Blabel; pc (program counter) = label
» Used to change execution flow

0 BL : branch and link

= BL label; pc =label, Ir = address of the next
address after the BL

= Similar to the B instruction but can be used for subroutine

call
o Overwrite the link register (Ir) with a return address

o Example 5
B forward
ADD 1, r2, #4
ADD 10, ré, #2
ADD r3, 17, #4
Forward
SUBTI, r2, #4
Backward
SUBTT, r2, #4
B backward

8c. Develop an assembly language program to find GCD of two numbers using conditional execution.

: Greatest Common Divisor Algorithm

ged
CMP rl, r2
BEQ complete
BLT lessthan
SUB rl, rl, rZ
B ged
lessthan
SUB ré, rz, rl
B ged

complete

9a. Discuss with an example code density in thumb instruction set over ARM.

This chapter introduces the Thumb instruction set. Thumb encodes a subset of the 32-bit
ARM instructions into a 16-bit instruction set space. Since Thumb has higher performance
than AEM on a processor with a 16-bit data bus, but lower performance than ARM on
a 32-bit data bus, use Thumb for memory-constrained systems,

Thumb has higher code density—the space taken up in memory by an executable
program—than ARM. For memory-constrained embedded systems, for example, mobile
phones and PDAs, code density is very important. Cost pressures also limit memory size,
width, and speed.

On average, a Thumb implementation of the same code takes up around 30% less
memory than the equivalent ARM implementation. As an example, Figure 4.1 shows the
same divide code routine implemented in ARM and Thumb assembly code. Even though the
Thumb implementation uses more instructions, the overall memory footprint is reduced.
Code density was the main driving force for the Thumb instruction set. Because it was also
designed as a compiler target, rather than for hand-written assembly code, we recommend
that you write Thumb-targeted code in a high-level language like C or C++.

Each Thumb instruction is related to a 32-bit ARM instruction. Figure 4.2 shows
a simple Thumb ADD instruction being decoded into an equivalent ARM ADD instruction.

Table 4.1 provides a complete list of Thumb instructions available in the THUMBv2
architecture used in the ARMv5STE architecture. Only the branch relative instruction
can be conditionally executed. The limited space available in 16 bits causes the barrel
shift operations ASR, LSL, L5R, and ROR to be separate instructions in the Thumb 1SA.

ARM code Thumb code
ARMDivide ThumbDivide
: IN: rO(value),rl{divisor) ; IN: rO(value),rl{divisor)
: OUT: r2(MODulus),r3(DIVide) ; OUT: r2(MODulus),r3(DIVide)

MOV r3,#0 MOV r3,#0
Toop loop

SUBs r0,r0,rl ADD r3,#1

ADDGE r3,r3,#1 SUB rd,rl

BGE Toop BGE loop

ADD rZ,rl,rl SUB r3,#1

ADD r2,r0,rl

5% 4 =20 bytes 6 % 2 =12 bytes

Figure 4.1 Code density.

9 b Explain ARM thumb interworking.

ARM-THUMB INTERWORKING

ARM-Thumb interworking is the name given to the method of linking ARM and Thumb
code together for both assembly and C/C++. It handles the transition between the two
states. Extra code, called a veneer, is sometimes needed to carry out the transition. ATPCS
defines the ARM and Thumb procedure call standards.

To call a Thumb routine from an ARM routine, the core has to change state. This state
change is shown in the T bit of the ¢psr. The BX and BLX branch instructions cause a switch
between ARM and Thumb state while branching to a routine. The BX Ir instruction returns
from a routine, also with a state switch if necessary.

The BLX instruction was introduced in ARMv3T. On ARMvAT cores the linker uses
a veneer to switch state on a subroutine call. Instead of calling the routine directly, the
linker calls the veneer, which switches to Thumb state using the BX instruction.

There are two versions of the BX or BLX instructions: an ARM instruction and a Thumb
equivalent. The ARM BX instruction enters Thumb state only if bit 0 of the address in
Rm is set to binary 1; otherwise it enters ARM state. The Thumb BX instruction does
the same.

Syntax: BX R
BLX Rm | label

BX Thumb version branch exchange pe=En & Oxfffffffe
T =Rn[0]
BLX Thumb version of the branch exchange Ir = (instruction address after the BLX) + 1
with link pe=label, T =0
pc=Rm & Oxfffffffe, T=Rm|0]

Unlike the ARM version, the Thumb BX instruction cannot be conditionally executed.

9c. Explain with example thumb stack operations.

4-7 STACK INSTRUCTIONS

The Thumb stack operations are different from the equivalent ARM instructions because
they use the more traditional POP and PUSH concept.

Syntax: POP {low_register_list{, pc}]
PUSH {low_register list{, 1r}}

POP | pop registers from the stacks | RA™™ <= mem32[sp+4*N], sp=sp+4*N

PUSH | push registers on to the stack | Rd*™ -> mem32[sp+4*N], sp=sp—4*N

The interesting point to note is that there is no stack pointer in the instruction. This is
because the stack pointer is fixed as register r13in Thumb operations and sp is automatically
updated. The list of registers is limited to the low registers ri to r7.

The PUSH register list also can include the link register Ir; similarly the POP register
list can include the pe. This provides support for subroutine entry and exit, as shown in
Example 4.7.

The stack instructions only support full descending stack operations.

ExampLE In this example we use the POP and PUSH instructions. The subroutine ThumbRoutine is
4.7 called using a branch with link (BL) instruction.

; Call subroutine

BL ThumbRout ine
; continue
ThumbRout ine
PUSH {rl, 1r} ; enter subroutine
MOV r0, #2
POP {rl, pc} ; return from subroutine

10a. Explain with an example the effect of using “char” and “short” as local variable types in ARM
processors.

5.2.1 LocaL VARIABLE TYPES

ARMvd4-based processors can efficiently load and store 8-, 16-, and 32-bit data. However,
most ARM data processing operations are 32-bit only. For this reason, you should use
a 32-bit datatype, int or long, for local variables wherever possible. Avoid using char and
short as local variable types, even if you are manipulating an 8- or 16-bit value. The one
exception is when you want wrap-around to occur. If you require modulo arithmetic of the
form 255 + 1 = 0, then use the char type.

To see the effect of local variable types, let’s consider a simple example. We'll look in
detail at a checksum function that sums the values in a data packet. Most communication
protocols (such as TCP/IP) have a checksum or cyclic redundancy check (CRC) routine to
check for errors in a data packet.

The following code checksums a data packet containing 64 words. It shows why you
should avoid using char for local variables.

int checksum vi(int *data)

{

char i;
int sum=10;

for (i=0; 1<64; i++)
{

sum += data[i];
1

return sum;

At first sight it looks as though declaring 1 as a char is efficient. You may be thinking
that a char uses less register space or less space on the ARM stack than an int. On the
ARM, both these assumptions are wrong. All ARM registers are 32-bit and all stack entries
are at least 32-bit. Furthermore, to implement the i++ exactly, the compiler must account
for the case when 1 = 255, Any attempt to increment 255 should produce the answer 0.

10.b List the C compiler data type mapping for an ARM target with their implementation.

Table 5.2 C compiler datatype mappings.

C Data Type Implementation

char unsigned 8-bit byte

short signed 16-bit halfword
int signed 32-bit word

long signed 32-bit word

long long signed 64-bit double word

10. C With an example, compare the efficiencies of signed int and unsigned int with an example.

Here is the last version of the 64-word packet checksum routine we studied in
Section 5.2. This shows how the compiler treats a loop with incrementing count i++,

int checksum v5(int *data)

{

unsigned int 1i;
int sum=0;

for (i=0; i<B4; i++)
{

sum += *(data++);

return sum;

This compiles to

checksum_v5

MOV rz,rl i rZ2 = data
MOV r0,#0 ; sum = 0
MOV rl,#0 : i =0
checksum_v5 Toop
LDR r3, [r2],#4 : r3 = *=(data++)
ADD rli,rl,#1 ; i+t
CMP rl,#0x40 ; compare 1, 64
ADD r0,r3,r0 ;osum += r3
BCC checksum v5 Toop 5 if (i<64) goto Toop
MOV pc,rld + return sum

It takes three instructions to implement the for loop structure:

= An ADD to increment 1
m A compare to check if 1 is less than 64
m A conditional branch to continue the loop if 1 < 64

This is not efficient. On the ARM, a loop should only use two instructions:

m A subtract to decrement the loop counter, which also sets the condition code flags on
the result

® A conditional branch instruction

The key point is that the loop counter should count down to zero rather than counting
up to some arbitrary limit. Then the comparison with zero is free since the result is stored

in the condition flags. Since we are no longer using 1 as an array index, there is no problem
in counting down rather than up.

ExampPLE This example shows the improvement if we switch to a decrementing loop rather than an
5.2 incrementing loop.

int checksum v6(int *data)

{
unsigned int i;
int sum=0;

for (i=64; i1=0; i--)

{

sum += *(data++);
1
return sum;

This compiles to

checksum_vé

MOV rz,rl ; T2 = data

MOV r0,#0 ; sum = 0

MOV rl,#0x40 ; 1 = 64
checksum_vé_loop

LDR ri, [r2] ,#4 : 3 = *(datat+)

SUBS rl,rl,#1 ; 1-- and set flags

ADD r0,r3,rd ;osum += r3

BNE checksum v6 loop ; 1if (i!=0) goto loop

MOV pc,rild ; return sum

The SUBS and BNE instructions implement the loop. Our checksum example now has
the minimum number of four instructions per loop. This is much better than six for
checksum_v1 and eight for checksum v3.

For an unsigned loop counter 1 we can use either of the loop continuation conditions
1!=0or i>0. As i can’t be negative, they are the same condition. For a signed loop counter,
it is tempting to use the condition 120 to continue the loop. You might expect the compiler
to generate the following two instructions to implement the loop:

SUBS rl,rl,#1 ; compare i with 1, i=i-1
BGT laop ; 1f (i+1=1) goto loop

In fact, the compiler will generate

SUB rl,rl,f1 3 1--
CMP rl1,20 ; compare i with 0
BGT loop ; if (i=0) goto loop

The compiler is not being inefficient. It must be careful about the case when
i = -0xB0000000 because the two sections of code generate different answers in this case.
For the first piece of code the SUBS instruction compares 1 with 1 and then decrements 1.
Since -0x80000000 < 1, the loop terminates. For the second piece of code, we decrement
1 and then compare with 0. Modulo arithmetic means that i now has the value
+0x7 T f, which is greater than zero. Thus the loop continues for many iterations.

Of course, in practice, 1 rarely takes the value -0x80000000. The compiler can’t usu-
ally determine this, especially if the loop starts with a variable number of iterations (see
Section 5.3.2).

Therefore you should use the termination condition 1 !=0 for signed or unsigned loop
counters. It saves one instruction over the condition 1>0 for signed 1.

Consider the compiler output for this function. We've added labels and comments to
make the assembly clear.

checksum_vl

MOV rz,rl ; r?2 = data
MOV r,#0 3 sum = 0
MOV rl,#0 s i=0

checksum_v1_loop
LDR r3, [r2,rl,LSL #2] ; r3 = data[i]

ADD rl,rl,#1 ;orl = i+l

AND rl,rl,#0xff ;1 = (char)rl
CMP rl,#0x40 ; compare 1, 64
ADD r0,r3,r0 3 sum += r3

BCC checksum_v1 loop ; if (i<64) loop
MOV pc,rld ; return sum

Now compare this to the compiler output where instead we declare i as an unsigned int.

checksum_v2

MOV ré,rl ; r2 = data

MOV rl,#0 osum = 0

MOV rl,#0 ;i=10
checksum_v2Z_loop

LDR r3,[r2,r1,L5L #2] ; r3 = data[i]

ADD rl,rl,#1 3 rlt

CMP rl,#0x40 ; compare i, 64

ADD rQ,r3,r0 ;osum += r3

BCC checksum_v2 loop ; if (i<64) goto loop
MOV pe,rld ; return sum

In the first case, the compiler inserts an extra AND instruction to reduce i to the range 0 to
255 before the comparison with 64. This instruction disappears in the second case.

Next, suppose the data packet contains 16-bit values and we need a 16-bit checksum. It
is tempting to write the following C code:

short checksum_v3(short *data)

{
unsigned int i;
short sum=0;

for (1=0; 1<64; i++)
{

sum = (short) (sum + data[i]);

return sum;

}
You may wonder why the for loop body doesn’t contain the code
sum += datal[i];

With armec this code will produce a warning if you enable implicit narrowing cast warnings
using the compiler switch -W +n. The expression sum+ data[i] is an integer and so can
only be assigned to a short using an (implicit or explicit) narrowing cast. As you can see
in the following assembly output, the compiler must insert extra instructions to implement
the narrowing cast:

checksum_v3

MoV re,.ri ; r2 = data
MoV r0,#0 ; sum = 0
MoV rl,#0 ;i =0

checksum_v3_loop

ADD ri,r2,rl,L5L #1 : r3 = &data[i]
LDRH r3, [r3,80] : r3 = data[i]
ADD rl,rl,#1 ; i+

CMP rl,#0x40 ; compare 1, 64
ADD r0,r3,r0 ; r0 = sum + r3
MoV rl,r0,L5L #16

MOV r0,r0,ASR #16 ; sum = (short)r0

BCC checksum v3 Toop ; if (i<64) goto Toop
MoV pc,rild 3 return sum

