

US
N

Internal Assessment Test I –Nov. 2021
Sub
:

Digital Design and Computer Organization
Sub
Code:

BCS302 Branch: AIML

Date
:

19122023 Duration: 90 mins
Max
Marks:

50
Sem
Sec:

B Time

12.15
–
1.45P
M

OBE

Answer any FIVE FULL Questions
MAR
KS

C
O

RB
T

1 List basic theorem of boolean algebra and its postulates
Prove: x+x=x
x+xy=x

[10] CO1 L4

L.H.S. X+X
=(X+X).1 [∵ X.1 = X]
=(X+X)(X+X') [∵ X+X' = 1]
=(X+X.X') [∵ X+YZ = (X+Y)(X+Z)]
=X+0 [∵ X.X' = 0]
=X [∵ X+0 = X]
= R.H.S.

L.H.S. X+XY
=X.1+XY [∵ X.1 = X]
=X(1+Y) [∵ X(Y+Z) = XY+XZ]
=X(Y+1)
=X.1
=X [∵ X+1 = X]
= R.H.S.

2a Explain canonical and standard form with an example

Canonical Form:

Canonical form refers to a standard or unique representation of a logical expression in Boolean
algebra. It is a way of expressing Boolean functions in a standard format that is independent of
any particular variable names or ordering. There are two common types of canonical forms: the
Sum of Products (SOP) and the Product of Sums (POS).

1. **Sum of Products (SOP) Canonical Form:**

In SOP, a Boolean expression is represented as the sum (OR) of products (AND). Each term in
the sum is a product of literals (variables or their complements). Here's an example:

Let's consider a Boolean function (F(A, B, C) = AB + overline{A}C). The SOP canonical

[10] CO1 L2

form is (F(A, B, C) = AB + overline{A}C).

2. **Product of Sums (POS) Canonical Form:**

In POS, a Boolean expression is represented as the product (AND) of sums (OR). Each term in
the product is a sum of literals. An example is:

Let (G(A, B, C) = (A + B)(overline{A} + C)). The POS canonical form is (G(A, B, C) = (A +
B)(overline{A} + C)).

Standard Form:

The term "standard form" typically refers to a specific representation or format that is
commonly used or recognized. In Boolean algebra, standard form often refers to expressions
where each term has all variables present (either directly or complemented) in a consistent
order.

For example, consider the Boolean expression (F(A, B, C) = AB + overline{A}C). In standard
form, we might rewrite it as (F(A, B, C) = ABC + overline{A}BC), ensuring that each term
includes all variables in a consistent order.

In summary, canonical form is a representation that is unique and independent of variable
names, while standard form often implies a specific and commonly accepted representation with
consistent variable ordering. The distinction can sometimes blur, and the terms might be used
interchangeably depending on the context.

2b Explain digital logic gates with graphic symbol, boolean function and truth table.

Digital logic gates are fundamental building blocks of digital circuits, performing logical
operations on binary inputs to produce binary outputs. There are several types of basic logic
gates, each with its own graphic symbol, Boolean function, and truth table. Here are some
common logic gates:

1. **AND Gate:**
- **Graphic Symbol:**
``` 
 
|      | 
| AND  | 
|| 
``` 
- **Boolean Function:** (Y = A cdot B)
- **Truth Table:**
``` 
| A | B | Y | 
|---|---|---| 
| 0 | 0 | 0 | 
| 0 | 1 | 0 | 
| 1 | 0 | 0 | 
| 1 | 1 | 1 | 
``` 


[10] CO1 L2

2. **OR Gate:**
- **Graphic Symbol:**
``` 
 
|      | 
|  OR  | 
|| 
``` 
- **Boolean Function:** (Y = A + B)
- **Truth Table:**
``` 
| A | B | Y | 
|---|---|---| 
| 0 | 0 | 0 | 
| 0 | 1 | 1 | 
| 1 | 0 | 1 | 
| 1 | 1 | 1 | 
``` 

3. **NOT Gate (Inverter):**
- **Graphic Symbol:**
``` 
 
|      | 
|  NOT | 
|| 
``` 
- **Boolean Function:** (Y = overline{A})
- **Truth Table:**
``` 
| A | Y | 
|---|---| 
| 0 | 1 | 
| 1 | 0 | 
``` 

4. **NAND Gate:**
- **Graphic Symbol:**
``` 
 
|      | 
| NAND | 
|| 
``` 
- **Boolean Function:** (Y = overline{A cdot B})
- **Truth Table:**
``` 
| A | B | Y | 
|---|---|---| 
| 0 | 0 | 1 | 
| 0 | 1 | 1 | 
| 1 | 0 | 1 | 
| 1 | 1 | 0 | 
``` 

5. **NOR Gate:**
- **Graphic Symbol:**
``` 
 



 

|      | 
| NOR  | 
|| 
``` 
- **Boolean Function:** (Y = overline{A + B})
- **Truth Table:**
``` 
| A | B | Y | 
|---|---|---| 
| 0 | 0 | 1 | 
| 0 | 1 | 0 | 
| 1 | 0 | 0 | 
| 1 | 1 | 0 | 
``` 

These gates form the basis for designing complex digital circuits. The Boolean functions and
truth tables provide a clear understanding of how each gate processes its inputs to produce an
output.

3 Implement the logic operations with NAND gates and implement the following boolean
function with NAND gates: F(x,y,z)=(1,2,3,4,5,7)

NAND gates are universal gates, meaning that any other logic gate or boolean function can be
implemented using only NAND gates. Here's how you can implement the boolean function (
F(x, y, z)) using NAND gates:

The boolean function (F(x, y, z)) is specified by the set ({1, 2, 3, 4, 5, 7}). The numbers in this
set correspond to the minterms in the truth table for (F(x, y, z)). Let's create the truth table:

``` 
| x | y | z | F | 
|---|---|---|---| 
| 0 | 0 | 0 | 1 | 
| 0 | 0 | 1 | 1 | 
| 0 | 1 | 0 | 1 | 
| 0 | 1 | 1 | 1 | 
| 1 | 0 | 0 | 1 | 
| 1 | 0 | 1 | 0 | 
| 1 | 1 | 0 | 1 | 
| 1 | 1 | 1 | 1 | 
``` 

Now, let's implement this boolean function using only NAND gates. Each row in the truth table
where (F = 1) corresponds to a minterm that needs a NAND gate. The idea is to take the inputs
for which (F = 1), feed them through NAND gates, and then combine the outputs of these
NAND gates using additional NAND gates.

Here's one possible implementation using NAND gates:

```plaintext 
F(x, y, z) = (x NAND x) NAND (y NAND y) NAND (z NAND z) NAND (x NAND y) NAND 
(x NAND z) NAND (y NAND z) NAND (x NAND y NAND z) 
``` 

In this expression:
- (x NAND x), (y NAND y), and (z NAND z) ensure that the minterms where only one
variable is true are considered.
- (x NAND y), (x NAND z), and (y NAND z) handle the minterms where two variables are
true.
- (x NAND y NAND z) takes care of the minterm where all three variables are true.

[10] CO1 L4

This expression consists of a series of NAND gates cascaded to implement the specified boolean
function (F(x, y, z)).

4(a) Simplify the following boolean functions to minimize number of literals
x+x’y
xy+x’z+yz

Let's simplify the given Boolean functions:

1. **(x + x'y):**
Applying the Absorption Law ((A + AB = A)), we can simplify this expression:

[x + x'y = x(1 + y) = x]

So, (x + x'y) simplifies to (x).

2. **(xy + x'z + yz):**
This expression has three terms, and it's not as straightforward as the first one. We can simplify
it using Boolean algebra laws.

[xy + x'z + yz]

We can factor out (y) from the first and third terms:

[y(x + z) + x'z]

Now, we can apply the Absorption Law ((A + AB = A)) to the first term:

[y + x'z]

This expression doesn't simplify further.

So, the simplified forms are:
1. (x + x'y) simplifies to (x).
2. (xy + x'z + yz) doesn't simplify further.

[5] CO1 L3

4 (b) Express the boolean function F=A+B’C as sum of minterms

To express the boolean function (F = A + B'C) as the sum of minterms, we first need to
identify the minterms for which the function is true (evaluates to 1).

The boolean function (F = A + B'C) is already in a form where each term is a minterm. The
minterms can be identified by looking at the combinations of inputs (A, B, C) that make each
term true.

Here are the minterms for (F = A + B'C):

1. (A = 1, B' = 0, C = 0) (corresponding to the term (A))
2. (A = 0, B' = 1, C = 0) (corresponding to the term (B'C))

So, the boolean function (F = A + B'C) can be expressed as the sum of minterms:

[F = m1 + m2]

where (m1) corresponds to the minterm (A) and (m2) corresponds to the minterm (B'C).

[05] CO1 L3

5 Simplify the boolean function F(w,x,y,z)=(1,3,7,11,15) which has the dont care conditions
(w,x,y,z)=(0,2,5)

To simplify the boolean function (F(w, x, y, z) = {1, 3, 7, 11, 15}) with don't care conditions (

[10] CO1 L3

{(w, x, y, z) = (0, 2, 5)}), we can use a Karnaugh map. A Karnaugh map is a graphical method
used for simplifying boolean expressions.

Here is the truth table based on the given minterms and don't care conditions:

``` 
| w | x | y | z | F | 
|---|---|---|---|---| 
| 0 | 0 | 0 | 0 |   | 
| 0 | 0 | 0 | 1 | 1 | 
| 0 | 0 | 1 | 0 |   | 
| 0 | 0 | 1 | 1 | 1 | 
| 0 | 1 | 0 | 0 |   | 
| 0 | 1 | 0 | 1 |   | 
| 0 | 1 | 1 | 0 | 1 | 
| 0 | 1 | 1 | 1 |   | 
| 1 | 0 | 0 | 0 |   | 
| 1 | 0 | 0 | 1 |   | 
| 1 | 0 | 1 | 0 |   | 
| 1 | 0 | 1 | 1 | 1 | 
| 1 | 1 | 0 | 0 |   | 
| 1 | 1 | 0 | 1 |   | 
| 1 | 1 | 1 | 0 |   | 
| 1 | 1 | 1 | 1 | 1 | 
``` 

Now, let's create a Karnaugh map for this truth table:

``` 
| 00 | 01 | 11 | 10 | 
______|____|____|____|____| 
00    |    |    |    |    | 
______|____|____|____|____| 
01    |    |    |    |    | 
______|____|____|____|____| 
11    |    |    |    |    | 
______|____|____|____|____| 
10    |    |    |    |    | 
______|____|____|____|____| 
``` 

Now, fill in the cells corresponding to the minterms with 1:

``` 
| 00 | 01 | 11 | 10 | 
______|____|____|____|____| 
00    |    |    |    |    | 
______|____|____|____|____| 
01    |    |    |    |    | 
______|____|____|____|____| 
11    |  1 |  1 |  1 |    | 
______|____|____|____|____| 
10    |    |    |    |    | 
______|____|____|____|____| 
``` 

Group adjacent 1s in powers of 2 (1, 2, 4, 8, ...). In this case, you can form two groups: one
with 1s in cells (1, 3) and another with 1s in cell (7). The don't care condition cells (0, 2, 5) can

be used to further simplify the expression. Now, write down the simplified expression:

[F(w, x, y, z) = Sigma (1, 3, 7) + d(0, 2, 5)]

Where (Sigma) denotes the sum of minterms and (d) denotes the don't care conditions. The
simplified boolean expression is:

[F(w, x, y, z) = bar{w}z + wxy + bar{w}x]

So, (F(w, x, y, z)) is simplified to (bar{w}z + wxy + bar{w}x).

6 Explain 4 levels of programming abstractions provided by Verilog HDL. Use AND gate
realization as an example at Gate Level, Data Flow Level and Behavioral Level
respectively.

The Verilog HDL was introduced in Section 3.10. In the current section, we introduce
additional features of Verilog, present more elaborate examples, and compare alternative
descriptions of combinational circuits in Verilog. Sequential circuits are presented in As
mentioned previously, the module is the basic building block for modeling hardware with the
Verilog HDL. The logic of a module can be described in any one (or a combination) of the
following modeling styles:
• Gate-level modeling using instantiations of predefined and user-defined primitive
gates.
• Dataflow modeling using continuous assignment statements with the keyword
assign .
• Behavioral modeling using procedural assignment statements with the keyword
always .
Gate-level (structural) modeling describes a circuit by specifying its gates and how they are
connected with each other. Dataflow modeling is used mostly for describing the Boolean
equations of combinational logic. We’ll also consider here behavioral modeling that is used to
describe combinational and sequential circuits at a higher level of abstraction. Combinational
logic can be designed with truth tables, Boolean equations, and schematics; Verilog has a
construct corresponding to each of these “classical” approaches to design: user-defined
primitives, continuous assignments, and primitives, as shown in Fig. 4.31 . There is one other
modeling style, called switch-level modeling. It is sometimes used in the simulation of MOS
transistor circuit models, but not in logic synthesis. We will not consider switch-level
modeling.
Gate-Level Modeling
Gate-level modeling was introduced in Section 3.10 with a simple example. In this type of
representation, a circuit is specified by its logic gates and their interconnections. Gate level
modeling provides a textual description of a schematic diagram. The Verilog HDL includes 12
basic gates as predefined primitives. Four of these primitive gates are of the three-state type.
The other eight are the same as the ones listed in Section 2.8. They are all declared with the
lowercase keywords and, nand, or, nor, xor, xnor, not, and buf, Primitives such as and are n -
input primitives

[10] CO1 L3

Dataflow Modeling

Dataflow modeling of combinational logic uses a number of operators that act on binary
operands to produce a binary result. Verilog HDL provides about 30 different operators. It is
necessary to distinguish between arithmetic and logic operations, so different symbols are used
for each. The plus symbol 1+2 indicates the arithmetic operation of addition; the bitwise logic
AND operation (conjunction) uses the symbol &. There are special symbols for bitwise logical
OR (disjunction), NOT, and XOR. The equality symbol uses two equals signs (without spaces
between them) to distinguish it from the equals sign used with the assign statement. The bitwise
operators operate bit by bit on a pair of vector operands to produce a vector result. The
concatenation operator provides a mechanism for appending multiple operands.

Behavioral Modeling

Behavioral modeling represents digital circuits at a functional and algorithmic level. It is used
mostly to describe sequential circuits, but can also be used to describe combinational circuits.
Here, we give two simple combinational circuit examples to introduce the subject. Behavioral
modeling is presented in more detail in Section 5.6, after the study of sequential circuits.
Behavioral descriptions use the keyword always , followed by an optional event control
expression and a list of procedural assignment statements. The event control expression
specifies when the statements will execute. The target output of a procedural assignment
statement must be of the reg data type. Contrary to the wire data type, whereby the target output
of an assignment may be continuously updated, a reg data type retains its value until a new
value is assigned.

