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1 List basic theorem of boolean algebra and its postulates 
Prove: x+x=x 
x+xy=x 
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L.H.S.   X+X 
=(X+X).1          [∵  X.1 = X] 
=(X+X)(X+X')      [∵  X+X' = 1] 
=(X+X.X')         [∵  X+YZ = (X+Y)(X+Z)] 
=X+0              [∵  X.X' = 0] 
=X                [∵  X+0 = X] 
= R.H.S. 
 
L.H.S.   X+XY 
=X.1+XY          [∵  X.1 = X] 
=X(1+Y)          [∵  X(Y+Z) = XY+XZ] 
=X(Y+1) 
=X.1 
=X               [∵  X+1 = X] 
= R.H.S. 
 

2a Explain canonical and standard form with an example 

**Canonical Form:** 

Canonical form refers to a standard or unique representation of a logical expression in Boolean 
algebra. It is a way of expressing Boolean functions in a standard format that is independent of 
any particular variable names or ordering. There are two common types of canonical forms: the 
Sum of Products (SOP) and the Product of Sums (POS). 

 

1. **Sum of Products (SOP) Canonical Form:** 

In SOP, a Boolean expression is represented as the sum (OR) of products (AND). Each term in 
the sum is a product of literals (variables or their complements). Here's an example: 

 

Let's consider a Boolean function ( F(A, B, C) = AB + overline{A}C ). The SOP canonical 
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form is ( F(A, B, C) = AB + overline{A}C ). 

 

2. **Product of Sums (POS) Canonical Form:** 

In POS, a Boolean expression is represented as the product (AND) of sums (OR). Each term in 
the product is a sum of literals. An example is: 

 

Let ( G(A, B, C) = (A + B)(overline{A} + C) ). The POS canonical form is ( G(A, B, C) = (A + 
B)(overline{A} + C) ). 

 

**Standard Form:** 

The term "standard form" typically refers to a specific representation or format that is 
commonly used or recognized. In Boolean algebra, standard form often refers to expressions 
where each term has all variables present (either directly or complemented) in a consistent 
order. 

 

For example, consider the Boolean expression ( F(A, B, C) = AB + overline{A}C ). In standard 
form, we might rewrite it as ( F(A, B, C) = ABC + overline{A}BC ), ensuring that each term 
includes all variables in a consistent order. 

 

In summary, canonical form is a representation that is unique and independent of variable 
names, while standard form often implies a specific and commonly accepted representation with 
consistent variable ordering. The distinction can sometimes blur, and the terms might be used 
interchangeably depending on the context. 

 
2b Explain digital logic gates with graphic symbol, boolean function and truth table. 

Digital logic gates are fundamental building blocks of digital circuits, performing logical 
operations on binary inputs to produce binary outputs. There are several types of basic logic 
gates, each with its own graphic symbol, Boolean function, and truth table. Here are some 
common logic gates: 
 
1. **AND Gate:** 
- **Graphic Symbol:** 
``` 
 
|      | 
| AND  | 
|| 
``` 
- **Boolean Function:** (Y = A cdot B) 
- **Truth Table:** 
``` 
| A | B | Y | 
|---|---|---| 
| 0 | 0 | 0 | 
| 0 | 1 | 0 | 
| 1 | 0 | 0 | 
| 1 | 1 | 1 | 
``` 
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2. **OR Gate:** 
- **Graphic Symbol:** 
``` 
 
|      | 
|  OR  | 
|| 
``` 
- **Boolean Function:** (Y = A + B) 
- **Truth Table:** 
``` 
| A | B | Y | 
|---|---|---| 
| 0 | 0 | 0 | 
| 0 | 1 | 1 | 
| 1 | 0 | 1 | 
| 1 | 1 | 1 | 
``` 
 
3. **NOT Gate (Inverter):** 
- **Graphic Symbol:** 
``` 
 
|      | 
|  NOT | 
|| 
``` 
- **Boolean Function:** (Y = overline{A}) 
- **Truth Table:** 
``` 
| A | Y | 
|---|---| 
| 0 | 1 | 
| 1 | 0 | 
``` 
 
4. **NAND Gate:** 
- **Graphic Symbol:** 
``` 
 
|      | 
| NAND | 
|| 
``` 
- **Boolean Function:** (Y = overline{A cdot B}) 
- **Truth Table:** 
``` 
| A | B | Y | 
|---|---|---| 
| 0 | 0 | 1 | 
| 0 | 1 | 1 | 
| 1 | 0 | 1 | 
| 1 | 1 | 0 | 
``` 
 
5. **NOR Gate:** 
- **Graphic Symbol:** 
``` 
 



 

|      | 
| NOR  | 
|| 
``` 
- **Boolean Function:** (Y = overline{A + B}) 
- **Truth Table:** 
``` 
| A | B | Y | 
|---|---|---| 
| 0 | 0 | 1 | 
| 0 | 1 | 0 | 
| 1 | 0 | 0 | 
| 1 | 1 | 0 | 
``` 
 
These gates form the basis for designing complex digital circuits. The Boolean functions and 
truth tables provide a clear understanding of how each gate processes its inputs to produce an 
output. 

3 Implement the logic operations with NAND gates and implement  the following boolean 
function with NAND gates: F(x,y,z)=(1,2,3,4,5,7) 
 
NAND gates are universal gates, meaning that any other logic gate or boolean function can be 
implemented using only NAND gates. Here's how you can implement the boolean function ( 
F(x, y, z) ) using NAND gates: 
 
The boolean function ( F(x, y, z) ) is specified by the set ({1, 2, 3, 4, 5, 7}). The numbers in this 
set correspond to the minterms in the truth table for ( F(x, y, z) ). Let's create the truth table: 
 
``` 
| x | y | z | F | 
|---|---|---|---| 
| 0 | 0 | 0 | 1 | 
| 0 | 0 | 1 | 1 | 
| 0 | 1 | 0 | 1 | 
| 0 | 1 | 1 | 1 | 
| 1 | 0 | 0 | 1 | 
| 1 | 0 | 1 | 0 | 
| 1 | 1 | 0 | 1 | 
| 1 | 1 | 1 | 1 | 
``` 
 
Now, let's implement this boolean function using only NAND gates. Each row in the truth table 
where ( F = 1 ) corresponds to a minterm that needs a NAND gate. The idea is to take the inputs 
for which ( F = 1 ), feed them through NAND gates, and then combine the outputs of these 
NAND gates using additional NAND gates. 
 
Here's one possible implementation using NAND gates: 
 
```plaintext 
F(x, y, z) = (x NAND x) NAND (y NAND y) NAND (z NAND z) NAND (x NAND y) NAND 
(x NAND z) NAND (y NAND z) NAND (x NAND y NAND z) 
``` 
 
In this expression: 
- ( x NAND x ), ( y NAND y ), and ( z NAND z ) ensure that the minterms where only one 
variable is true are considered. 
- ( x NAND y ), ( x NAND z ), and ( y NAND z ) handle the minterms where two variables are 
true. 
- ( x NAND y NAND z ) takes care of the minterm where all three variables are true. 
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This expression consists of a series of NAND gates cascaded to implement the specified boolean 
function ( F(x, y, z) ). 
 

4(a) Simplify the following boolean functions to minimize number of literals 
x+x’y 
xy+x’z+yz 
 
Let's simplify the given Boolean functions: 
 
1. **(x + x'y):** 
Applying the Absorption Law ((A + AB = A)), we can simplify this expression: 
 
[ x + x'y = x(1 + y) = x ] 
 
So, ( x + x'y ) simplifies to ( x ). 
 
2. **(xy + x'z + yz):** 
This expression has three terms, and it's not as straightforward as the first one. We can simplify 
it using Boolean algebra laws. 
 
[ xy + x'z + yz ] 
 
We can factor out (y) from the first and third terms: 
 
[ y(x + z) + x'z ] 
 
Now, we can apply the Absorption Law ((A + AB = A)) to the first term: 
 
[ y + x'z ] 
 
This expression doesn't simplify further. 
 
So, the simplified forms are: 
1. ( x + x'y ) simplifies to ( x ). 
2. ( xy + x'z + yz ) doesn't simplify further. 
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4 (b) Express the boolean function F=A+B’C as sum of minterms 
 
To express the boolean function ( F = A + B'C ) as the sum of minterms, we first need to 
identify the minterms for which the function is true (evaluates to 1). 
 
The boolean function ( F = A + B'C ) is already in a form where each term is a minterm. The 
minterms can be identified by looking at the combinations of inputs (A, B, C) that make each 
term true. 
 
Here are the minterms for ( F = A + B'C ): 
 
1. ( A = 1, B' = 0, C = 0 ) (corresponding to the term ( A )) 
2. ( A = 0, B' = 1, C = 0 ) (corresponding to the term ( B'C )) 
 
So, the boolean function ( F = A + B'C ) can be expressed as the sum of minterms: 
 
[ F = m1 + m2 ] 
 
where ( m1 ) corresponds to the minterm ( A ) and ( m2 ) corresponds to the minterm ( B'C ). 
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5 Simplify the boolean function F(w,x,y,z)=(1,3,7,11,15) which has the dont care conditions 
(w,x,y,z)=(0,2,5) 
 
To simplify the boolean function ( F(w, x, y, z) = {1, 3, 7, 11, 15} ) with don't care conditions ( 
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{(w, x, y, z) = (0, 2, 5)} ), we can use a Karnaugh map. A Karnaugh map is a graphical method 
used for simplifying boolean expressions. 
 
Here is the truth table based on the given minterms and don't care conditions: 
 
``` 
| w | x | y | z | F | 
|---|---|---|---|---| 
| 0 | 0 | 0 | 0 |   | 
| 0 | 0 | 0 | 1 | 1 | 
| 0 | 0 | 1 | 0 |   | 
| 0 | 0 | 1 | 1 | 1 | 
| 0 | 1 | 0 | 0 |   | 
| 0 | 1 | 0 | 1 |   | 
| 0 | 1 | 1 | 0 | 1 | 
| 0 | 1 | 1 | 1 |   | 
| 1 | 0 | 0 | 0 |   | 
| 1 | 0 | 0 | 1 |   | 
| 1 | 0 | 1 | 0 |   | 
| 1 | 0 | 1 | 1 | 1 | 
| 1 | 1 | 0 | 0 |   | 
| 1 | 1 | 0 | 1 |   | 
| 1 | 1 | 1 | 0 |   | 
| 1 | 1 | 1 | 1 | 1 | 
``` 
 
Now, let's create a Karnaugh map for this truth table: 
 
``` 
| 00 | 01 | 11 | 10 | 
______|____|____|____|____| 
00    |    |    |    |    | 
______|____|____|____|____| 
01    |    |    |    |    | 
______|____|____|____|____| 
11    |    |    |    |    | 
______|____|____|____|____| 
10    |    |    |    |    | 
______|____|____|____|____| 
``` 
 
Now, fill in the cells corresponding to the minterms with 1: 
 
``` 
| 00 | 01 | 11 | 10 | 
______|____|____|____|____| 
00    |    |    |    |    | 
______|____|____|____|____| 
01    |    |    |    |    | 
______|____|____|____|____| 
11    |  1 |  1 |  1 |    | 
______|____|____|____|____| 
10    |    |    |    |    | 
______|____|____|____|____| 
``` 
 
Group adjacent 1s in powers of 2 (1, 2, 4, 8, ...). In this case, you can form two groups: one 
with 1s in cells (1, 3) and another with 1s in cell (7). The don't care condition cells (0, 2, 5) can 



 

be used to further simplify the expression. Now, write down the simplified expression: 
 
[ F(w, x, y, z) = Sigma (1, 3, 7) + d(0, 2, 5) ] 
 
Where ( Sigma ) denotes the sum of minterms and ( d ) denotes the don't care conditions. The 
simplified boolean expression is: 
 
[ F(w, x, y, z) = bar{w}z + wxy + bar{w}x ] 
 
So, ( F(w, x, y, z) ) is simplified to ( bar{w}z + wxy + bar{w}x ). 
 

6 Explain 4 levels of programming abstractions provided by Verilog HDL. Use AND gate 
realization as an example at Gate Level, Data Flow Level and Behavioral Level 
respectively. 
 
The Verilog HDL was introduced in Section 3.10. In the current section, we introduce 
additional features of Verilog, present more elaborate examples, and compare alternative 
descriptions of combinational circuits in Verilog. Sequential circuits are presented in As 
mentioned previously, the module is the basic building block for modeling hardware with the 
Verilog HDL. The logic of a module can be described in any one (or a combination) of the 
following modeling styles: 
• Gate-level modeling using instantiations of predefined and user-defined primitive 
gates. 
• Dataflow modeling using continuous assignment statements with the keyword 
assign . 
• Behavioral modeling using procedural assignment statements with the keyword 
always . 
Gate-level (structural) modeling describes a circuit by specifying its gates and how they are 
connected with each other. Dataflow modeling is used mostly for describing the Boolean 
equations of combinational logic. We’ll also consider here behavioral modeling that is used to 
describe combinational and sequential circuits at a higher level of abstraction. Combinational 
logic can be designed with truth tables, Boolean equations, and schematics; Verilog has a 
construct corresponding to each of these “classical” approaches to design: user-defined 
primitives, continuous assignments, and primitives, as shown in Fig. 4.31 . There is one other 
modeling style, called switch-level modeling. It is sometimes used in the simulation of MOS 
transistor circuit models, but not in logic synthesis. We will not consider switch-level 
modeling. 
Gate-Level Modeling 
Gate-level modeling was introduced in Section 3.10 with a simple example. In this type of 
representation, a circuit is specified by its logic gates and their interconnections. Gate level 
modeling provides a textual description of a schematic diagram. The Verilog HDL includes 12 
basic gates as predefined primitives. Four of these primitive gates are of the three-state type. 
The other eight are the same as the ones listed in Section 2.8. They are all declared with the 
lowercase keywords and, nand, or, nor, xor, xnor, not, and buf, Primitives such as and are n -
input primitives 
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Dataflow Modeling 

Dataflow modeling of combinational logic uses a number of operators that act on binary 
operands to produce a binary result. Verilog HDL provides about 30 different operators. It is 
necessary to distinguish between arithmetic and logic operations, so different symbols are used 
for each. The plus symbol 1+2 indicates the arithmetic operation of addition; the bitwise logic 
AND operation (conjunction) uses the symbol &. There are special symbols for bitwise logical 
OR (disjunction), NOT, and XOR. The equality symbol uses two equals signs (without spaces 
between them) to distinguish it from the equals sign used with the assign statement. The bitwise 
operators operate bit by bit on a pair of vector operands to produce a vector result. The 
concatenation operator provides a mechanism for appending multiple operands. 

 

Behavioral Modeling 

Behavioral modeling represents digital circuits at a functional and algorithmic level. It is used 
mostly to describe sequential circuits, but can also be used to describe combinational circuits. 
Here, we give two simple combinational circuit examples to introduce the subject. Behavioral 
modeling is presented in more detail in Section 5.6, after the study of sequential circuits. 
Behavioral descriptions use the keyword always , followed by an optional event control 
expression and a list of procedural assignment statements. The event control expression 
specifies when the statements will execute. The target output of a procedural assignment 
statement must be of the reg data type. Contrary to the wire data type, whereby the target output 
of an assignment may be continuously updated, a reg data type retains its value until a new 
value is assigned. 



 

 

 

 

 
 

 


