

USN

Internal Assessment Test 1 – December 2023

Sub: Object Oriented Programming with JAVA
Sub

Code:
BCS306A Branch:

AIML &

CSE(AIML)

Date: /12/23 Duration: 90 minutes Max Marks: 50 Sem/Sec: III -A,B&C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1

a

Explain 3 oop principles

[6] 1 L1

b
With a an example ,explain in working of Short circuit logical and >>>(unsigned

right shift).
[4] L1

2 a Explain logical and Bitwise operators with an example (06M) [6] 1 L3

 b

publicclass Example {

publicstaticvoid main(String[] args) {

 inta;

 for(a=0;a<3;a++) {

 intb=-1;

 System.out.println(""+b);

 b=50;

 System.out.println(""+b);

 }

}

}

What is the output of the above code? If you insert another ‘int b’ outside the for

loop, what is the output.

[4] 1 L2

3
a

what is typecasting? Illustrate with an example, what is meant by automatic type

promotion
[6] 1 L2

b How to declare two dimensional arrays in java ? explain with an simple example. [4] 1 L2

4
a Explain switchcase with an example. [6] 1 L2

b Differentiate between for loop and for each with an example. [4] 1 L2

5
a Discuss Lexical issues in JAVA program. [6] 1 L2

b with an example , explain ternary operator. [4] 1 L2

6
a Explain class and objects with an example. [5] 2 L2

b Write a java program to print even numbers from 0 to 100. [5] 1 L2

Scheme

Question

Description Marks Distribution Max

Marks

1 a
Each OOP principal

2 M

2 M
2M

6M

6M

1 b
Logical Short circuit

>>> Unsigned right shift

2 M

2 M

4M

4M

2a
Explanation of logical and

Bitwise operators with an example (06M)

3+3

6M

6M

2b
publicclass Example {

publicstaticvoid main(String[] args) {

 inta;

 for(a=0;a<3;a++) {

 intb=-1;

 System.out.println(" "+b);

 b=50;

 System.out.println(" "+b);
 }

}

}

For the output of the above code

Inserting another ‘int b’ outside the for loop, what is the output.

2+2 M

4M

4M

3 a Explanation of typecasting.

 Illustrating with an example, automatic type promotion+ Type promotion

rules+ example

 1+2+1+2

 6M

 6M

3b

Declaring two dimensional arrays in java

explanation with an simple example.

2M

2M

4M

4M

4 a
a. Switch syntax

b. Simple Switch ,

c. Nested Switch
suitable example.

2 M

2 M

2M

6M

6M

4b

Differences between for loop and for each with an example.

4M

4M 4M

5 a Lexical issues in JAVA program.

whitespace,

Identifiers,

Literals,

Comments,

Separators,

Keywords

1+1+1+1+1+1

6M

6M

5b with an example , explanation of ternary operator. 2+2

4M
4M

6 a Definition of class

syntax.

 object with syntax.

1+2+2

5M

5M

6b Write a java program to print even numbers from 0 to 100. 5M 5M 5M

Solution
Q1 a> Explain three OOP principles.
Encapsulation: Encapsulation can be defined as the procedure of casing up of codes and their associated data jointly into one

single component.
In simple terms, encapsulation is a way of packaging data and methods together into one unit. Encapsulation gives us the ability to

make variables of a class keep hidden from all other classes of that program or namespace.
 Hence, this concept provides programmers to achieve data hiding. Programmers can have full control over what data storage and

manipulation within the class

Inheritance: Inheritance can be defined as the procedure or mechanism of acquiring all the properties and behavior of one class

to another, i.e., acquiring the properties and behavior of child class from the parent class.
Java supports three types of inheritance. These are:

Polymorphism: The word polymorphism means having multiple forms. The term Polymorphism gets derived from the Greek

word where poly + morphos where poly means many and morphos means forms.
· Static Polymorphism
· Dynamic Polymorphism.

1b> use of short circuit property with example.

These are secondary versions of the Boolean AND and OR operators, and are known as

short-circuit logical operators. As you can see from the preceding table, the OR operator

results in true when A is true, no matter what B is. Similarly, the AND operator results in

false when A is false, no matter what B is.

a=10 b=0

if(b&&a) here since b is 0; result is going to be 0; no need to check a

if(a||b) here since a is non zero; result is going to be 1; no need to check b

unsigned Right shift(>>>)

The Unsigned Right Shift/Shift Right Zero Fill: Always shifts zeros into the high-order bit.

For example, if you are shifting something that does not represent a numeric value, you may not want sign

extension to take place. This situation is common when you are working with pixel-based values and

graphics. In these cases, you will generally want to shift a zero into the high-order bit no matter what its

initial value was.

value >>> num

The following code fragment demonstrates the >>>. Here, a is set to –1, which sets all

32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with

zeros, ignoring normal sign extension. This sets a to 255.

int a = -1;

a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int

>>>24

00000000 00000000 00000000 11111111 255 in binary as an int

2a. Explain logical and Bitwise operators with an example (06M)

Boolean logical operators

The Boolean logical operators shown here operate only on boolean operands. All of the

binary logical operators combine two boolean values to form a resultant boolean value.

The logical Boolean operators, &, |, and ^, operate on boolean values in the same way

that they operate on the bits of an integer. The logical ! operator inverts the Boolean state:

!true == false and !false == true. The following table shows the effect of each logical

operation:

/ Demonstrate the boolean logical operators.

class BoolLogic {

public static void main(String args[]) {

boolean a = true;

boolean b = false;

boolean c = a | b;

boolean d = a & b;

boolean e = a ^ b;

boolean f = (!a & b) | (a & !b);

boolean g = !a;

System.out.println(" a = " + a);

System.out.println(" b = " + b);

System.out.println(" a|b = " + c);

System.out.println(" a&b = " + d);

System.out.println(" a^b = " + e);

System.out.println("!a&b|a&!b = " + f);

System.out.println(" !a = " + g);

}

}

Java defines several bitwise operators that can be applied to the integer types: long, int, short,

char, and byte. These operators act upon the individual bits of their operands. They are

summarized in the following table:

The Bitwise Logical Operators

The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of

each operation. In the discussion that follows, keep in mind that the bitwise operators are

applied to each individual bit within each operand.

The Bitwise NOT(optional)

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its

operand. For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101

after the NOT operator is applied

The Bitwise AND

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in

all other cases. Here is an example:

00101010 42

&00001111 15

00001010 10

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then

the resultant bit is a 1, as shown here:

00101010 42

| 00001111 15

00101111 47

The Bitwise XOR

The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result

is 1.

00101010 42

^ 00001111 15

00100101 37

The Left Shift(optional)

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of

times. It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the

<< moves all of the bits in the specified value to the left by the number of bit positions

specified by num

byte a = 64, b;

int i;

i = a << 2;

b = (byte) (a << 2);

a=64

 01000000

01 00000000

a: 64

i and b: 256 0

The right shift (optional):

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of

times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value. That is, the >>

moves all of the bits in the specified value to the right the number of bit positions specified

by num.

int a = 35;

a = a >> 2; // a contains 8

Looking at the same operation in binary shows more clearly how this happens:

00100011 35

>> 2

00001000 8

The Unsigned Right Shift(optional):

The >> operator automatically fills the high-order bit with its previous

contents each time a shift occurs.

int a = -1;

a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int

>>>24

00000000 00000000 00000000 11111111 255 in binary as an int

2a. publicclass Example {

publicstaticvoid main(String[] args) {

 inta;

 for(a=0;a<3;a++) {

 intb=-1;

 System.out.println(" "+b);

 b=50;

 System.out.println(" "+b);

 }

}

}
For the output of the above code

Inserting another ‘int b’ outside the for loop, what is the output.

Output (2m)
-1
50
-1
50
-1
50

Inserting another ‘int b’ outside the for loop,

publicstaticvoid main(String[] args) {

 inta;

 int b;// case 1

 for(a=0;a<3;a++) {

 intb=-1;

 System.out.println(" "+b);

 b=50;

 System.out.println(" "+b);

 }

}

}

Ouput : error (1m)

publicstaticvoid main(String[] args) {
 inta;

 for(a=0;a<3;a++) {
 intb=-1;
 System.out.println(""+b);
 b=50;
 System.out.println(""+b);
 }
 intb;

}
}
Ouput : values will not change (1m)
(OR)

-1
50
-1
50
-1
50

3a. what is typecasting? Illustrate with an example, what is meant by automatic type promotion

 To create a conversion between two incompatible types, we must use a cast. A cast is simply an explicit type conversion. It has

this general form: (1m)
(target-type) value
For example, the following fragment casts an int to a byte. If the integer’s value is larger than the range of a byte, it will be

reduced modulo (the remainder of an integer division by the) byte’s range.

int a;
byte b;
// ...

b = (byte) a;

Automatic Type Promotion in Expressions(2M)

➢Along with assignments, type conversions will occur even in expressions.

➢ In an expression, the precision required of an intermediate value will sometimes exceed

the range of either operand. For example,

byte a = 40;

byte b = 50;

byte c = 100;

int d = a * b / c;

The result of the intermediate term a * b exceeds the range of either of its byte operands. Tohandle this kind

of problem, Java automatically promotes each byte, short, or char operandto int when evaluating an

expression. This means that the subexpression a * b is performedusing integers. 2000, the result of the

intermediate expression 50 * 40, is legal even though a andb are both specified as type byte.

Automatic promotions may cause compile-time errors. For example, the correct code causes a

Problem

byte b =50;

b = b * 2; // Error, Cannot assign an int to a byte

The code is attempting to store 50 * 2, a valid byte value, back into a byte variable. Because theoperands

were automatically promoted to int when the expression was evaluated, the reuslt hasalso been promoted to

int. Thus, the result of the expression is now of type int, which cannot beassigned to a byte without the use

of a cast. This is true even if, the value being assigned wouldstill fit in the target type.During the

consequences of overflow, we should use an explicit cast,

byte b = 50;

b = (byte) (b * 2);

The Type Promotion Rules (1M)

Java defines several type promotion rules that apply to expressions. They are -

1. all byte, short and char values are promoted to int.

2. if one operand is long, the whole expression is promoted to long.

3. if one operand is float, the entire expression is promoted to float.

4. if one of the operands is double, the result is double.

 2M

3b. How to declare two dimensional arrays in java ? explain with an simple example.

● Syntax:

type var-name[] [];

var-name = new type [size] [size];

or

type var-name [] [] = new type [size] [size];

example

class TwoDArray

{

public static void main(String args[])

{

int twoD [] [] = new int [4] [5];

int i,j,k=0;

for(i=0;i<4;i++)

for(j=0;j<5;j++)

{

twoD[i][j] = k;

k++;

}

for(i=0;i<4;i++)

{

for(j=0;j<5;j++)

System.out.print (twoD[i][j] + “ “);

System.out.println();

}

}

}

4a. Explain switchcase with an example.

The switch statement is Java’s multiway branch statement. It provides an easy way todispatch execution to

different parts of your code based on the value of an expression.

Here isthe general form of a switch statement:

switch (expression) {

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

.

.

.

case valueN :

// statement sequence

break;

default:

// default statement sequence

// A simple example of the switch.

class SampleSwitch {

public static void main(String args[]) {

for(int i=0; i<6; i++)

switch(i) {

case 0:

System.out.println("i is zero.");

break;

case 1:

System.out.println("i is one.");

break;

case 2:

System.out.println("i is two.");

break;

case 3:

System.out.println("i is three.");

break;

default:

System.out.println("i is greater than 3.");

}

}

}

The output produced by this program is shown here:

i is zero.

i is one.

i is two.

i is three.

i is greater than 3.

i is greater than 3

Nested switch Statements

switch as part of the statement sequence of an outer switch. This is called anested switch.

switch(count) {

case 1:

switch(target) { // nested switch

case 0:

System.out.println("target is zero");

break;

case 1: // no conflicts with outer switch

System.out.println("target is one");

break;

}

break;

case 2: // ...

 summary, there are three important features of the switch statement to note:

• The switch differs from the if in that switch can only test for equality, whereas if canevaluate any type of

Boolean expression. That is, the switch looks only for a matchbetween the value of the expression and one

of its case constants.

• No two case constants in the same switch can have identical values. Of course, aswitch statement and an

enclosing outer switch can have case constants in common.

• A switch statement is usually more efficient than a set of nested ifs

4b. Differences between for loop and for each with an example

For loop

ForEach

1. Syntax:for(initialization;

condition; iteration) statement;

2. Applicable for only java

Statements

3. Sequentially increment or

decrement
4. It can perform both read and write

1.Syntax:for(type its-var : collection)

2. Applicable for only Array statements.

3 Only increment.

4 It can only perform write.

5a. Discuss Lexical issues in JAVA program.

Java programs are a collection of whitespace, identifiers, literals, comments, operators,

separators, and keywords.

• Whitespace: Java is a free-form language. In Java, whitespace is a space, tab, or newline.

• Identifiers: Used for class names, method names, and variable names. An identifier may be any descriptive sequence

of uppercase and lowercase letters, numbers, or the underscore and dollar-sign characters. They must not begin with a

number, again, Java is case- sensitive.

• AvgTempcount, a4, $test, this_is_ok are Valid

• 2count, high-temp, Not/ok are Invalid

• Literals: A constant value in Java is created by using a literal representation of it. It can be used anywhere a value

of its type is allowed.

• 100, 98.6, 'X‘, "This is a test“

• Comments:Astherearethreetypesof comments defined by Java.

1. Single comment

2. Multiline

3. documentation comment

Documentation comment is used to produce an HTML file that documents your program.

The documentation comment begins with a /** and ends with a */.

 Separators : The most commonly usedseparator in Java is the semicolon. As you have seen, it is used to terminate

statements.

Java Keywords

There are 50 keywords currently defined in the Java language.

These keywords, combined with the syntax of the operators and separators, form thefoundation of the Java language.

These keywords cannot be used as names for a variable, class, or method.

The keywords const and goto are reserved but not used.

in addition to the keywords, Java reserves the following: true, false, and null.

These are values defined by Java

5b. with an example , explain ternary operator.

· ternary (three-way) operator that can replace certain types of if-then-else statements.
· This operator is the ?.
· The ? has this general form: expression1 ? expression2 : expression3
· Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is true, then expression2 is

evaluated; otherwise, expression3 is evaluated.
· The result of the ? operation is that of the expression evaluated.
· Both expression2 and expression3 are required to return the same type, which can’t be void.

Largest among three numbers:
publicclass Ternary {

 publicstaticvoid main(String[] args) {
 int a=40,b=39,c=99,res;
 res=(a>b)?((a>c)?a:c):((b>c)?b:c);
 System.out.println(res);// 99
 }

}

6a. Definition of class and object in JAVA with syntax.

Class is the logical construct upon which the entire Java language is built because it defines the shape and

nature of an object. It defines a new data type.

The General Form of a Class

A class contains data (member or instance variables) and the code (member methods) that operate on the

data.

The general form can be given as:

class classname

{

type var1;

type var2;

.......

type method1(para_list)

{

//body of method1

}

type method2(para_list)

{

//body of method2

}

...........

}

Variables declared within a class are called as instancevariables because every instance (or object) of a class

contains its own copy of these variables. The code iscontained within methods. Methods and instance

variables collectively called as members of the class.

Object :object is an instance of a class.

Creating a class means having a user-defined data type. To have a variable of this new data type, we should

create an object. Consider the following declaration:

Box b1;

This statement will not actually create any physical object, but the object name b1 can just refer to the actual

object on the heap after memory allocation as follows:

b1 = new Box ();

We can even declare an object and allocate memory using a single statement:

Box b1=new Box();

6b.Write a java program to print even numbers from 0 to 100.

publicclass EvenNumbers {
publicstaticvoid main(String[] args) {
 System.out.println("Even numbers from 0 to 100:");

// Using a for loop to iterate from 0 to 100
for (inti = 0; i<= 100; i++) {
// Checking if the current number is even
if (i % 2 == 0) {
 System.out.println(i + " ");
 }
 }
 }
}

