


US N														
Sub:	D	ATA S	STRU	СТИ	IRES	S AN	D Al	PPLI	[CA]	ΓΙΟΙ	NS		Sub Code:	BCS304
Date:				Dura	tion:	90	minı	ıtes	Ma	ax M	arks:	50	Sem/Sec: III A,B,C	
			1						Sch	neme	e and	Solut	•	
1 a		o searc swer: nstruc PR, 14 ((urch a) Shul I C	ch an ction 18 n iter nod	item	the I	he B 4M(s + s, 1) 5, 1 3^{2}	ST. step . 6 , -2M . () 	wise	t me t me t me t de t de	$d_{L} = \frac{1}{25}$	22, 14	, 18, 5	50, 9, 15, 7, 0	6, 12, 32, 25 also write a function in
b	An	swer:												

Algorithm DFS(Verter) Visited [V] = 1 for all vertex no adjacet to V : id (visited[w] = = DFS(w); Algorithm BES(V) A DES & G(V,E) is comied out beginning at vertex V and array visited Visited [V] = true; initialrequere (Q); add (Qiv); While Enot emply quere (Q) do V= delete (Q, V); for all vertex be adjacent bits if not visited [w] then add (Q, w); Misited (W) = Mae; Example 2M Given a hash table with 9 slots. The hash function is $h(k)=k \mod 9$. The collision is overcome by chaining. The following keys are inserted in the order. a 5,28,19,15,20,33,12,17,10. Develop the corresponding hash table. 4 Answer:

		h(1) = Kmod 9
		5, 28, 19, 15, 20,33, 12, 17, 10
		5 med 9 = 5
		$28 \mod 9 = 1$ $19 \mod 9 = 1$
		$19 \mod 7 = 1$ $15 \mod 9 = 6$
		$20 \mod 9 = 2$
		33 mod 9 = 6
		12 mod 9 = 3
		17 mod 9 = 8
		10 mod 9 = 1
		Explain the following by taking suitable examples, a) Linear Probing b) Quadratic Probing c) Folding Method Answer:
	b	
	b	Linear Probing technique with example-2M
	b	
	b	Linear Probing technique with example-2M
	b	Linear Probing technique with example-2M Quadratic Probing technique with example-2M
	b	Linear Probing technique with example-2M Quadratic Probing technique with example-2M Folding technique with example- 2M
	b	Linear Probing technique with example-2M Quadratic Probing technique with example-2M Folding technique with example- 2M Explain dynamic hashing using directories with the help of an example.
	b	Linear Probing technique with example-2M Quadratic Probing technique with example-2M Folding technique with example- 2M Explain dynamic hashing using directories with the help of an example. Answer:
5	b	Linear Probing technique with example-2M Quadratic Probing technique with example-2M Folding technique with example- 2M Explain dynamic hashing using directories with the help of an example. Answer: Dynamic hashing using Directories 2M
5	b	Linear Probing technique with example-2M Quadratic Probing technique with example-2M Folding technique with example- 2M Explain dynamic hashing using directories with the help of an example. Answer: Dynamic hashing using Directories 2M -Importance of directory and buckets
5	a	Linear Probing technique with example-2M Quadratic Probing technique with example-2M Folding technique with example- 2M Explain dynamic hashing using directories with the help of an example. Answer: Dynamic hashing using Directories 2M -Importance of directory and buckets -Increasing depth of the directory. Example 3M Differentiate between height biased and weight biased leftist tree with examples.
5	a	Linear Probing technique with example-2M Quadratic Probing technique with example-2M Folding technique with example- 2M Explain dynamic hashing using directories with the help of an example. Answer: Dynamic hashing using Directories 2M -Importance of directory and buckets -Increasing depth of the directory. Example 3M
5	b	Linear Probing technique with example-2M Quadratic Probing technique with example-2M Folding technique with example- 2M Explain dynamic hashing using directories with the help of an example. Answer: Dynamic hashing using Directories 2M -Importance of directory and buckets -Increasing depth of the directory. Example 3M Differentiate between height biased and weight biased leftist tree with examples.
5	b	Linear Probing technique with example-2M Quadratic Probing technique with example-2M Folding technique with example- 2M Explain dynamic hashing using directories with the help of an example. Answer: Dynamic hashing using Directories 2M - Importance of directory and buckets - Increasing depth of the directory. Example 3M Differentiate between height biased and weight biased leftist tree with examples. Answer: Height biased leftist tree 2.5M Weight biased leftist tree 2.5M
	b a b	Linear Probing technique with example-2M Quadratic Probing technique with example-2M Folding technique with example- 2M Explain dynamic hashing using directories with the help of an example. Answer: Dynamic hashing using Directories 2M -Importance of directory and buckets -Increasing depth of the directory. Example 3M Differentiate between height biased and weight biased leftist tree with examples. Answer: Height biased leftist tree 2.5M Weight biased leftist tree 2.5M What is the need for an optimal BST. Find the optimal BST for n=4,
5	b a b	Linear Probing technique with example-2M Quadratic Probing technique with example-2M Folding technique with example- 2M Explain dynamic hashing using directories with the help of an example. Answer: Dynamic hashing using Directories 2M - Importance of directory and buckets - Increasing depth of the directory. Example 3M Differentiate between height biased and weight biased leftist tree with examples. Answer: Height biased leftist tree 2.5M Weight biased leftist tree 2.5M

q0, q1, q2, q3, q4 =2,3,1,1,1

Answer:

Need for BST-2M

Problem-8M

n	1 (i, c) =	9 (i)	a man a state of the		
C	$(i_i) = 0$	li.			
5	(i, i) =	0	2	. 3	, 4
0	0 Web = 2 Ceo = 0 Aco = 0 Wei = 8 fri Cei = 8 Nei = 1	$W_{11} = 3$ $C_{11} = 0$ $\lambda_{11} = 0$ $W_{12} = 7Ei$ $E_{12} = 7$ $\lambda_{12} = 7$	$W_{12} = 1$ $C_{22=0}$ $A_{21=0}$ $W_{23} = 3$ $C_{13} = 3$	$W_{33} = 1$ $C_{33} = 0$ $A_{35} = 0$ $W_{34} = -3$ $C_{34} = -3$ $A_{34} = -3$ $A_{34} = -4$	W44= 1 C44=0 N44=0
Rest the sh	Way = 12 Co1 = 19 Au = 1 Way = 14 Coy = 25 Auy = 16 Coy = 82 Auy = 2 Auy = 2	W13 = 9	$h_{23} = 3$ $W_{24} = 5$ $C_{24} = 8$ $h_{23} = 3$		
		(°,4) (°,4)	= k	1 d.	
r	(i, k-1)		= 2 ~(!	2(2)	f = k (4) = 3