e,f,ﬁms .,

& "
£ W
USN \%
1) CMRIT
Internal Assessment Test 3— March 2024
Sub: | Automata Theory & Compiler Design Cc? duet? 21CS51 Branch: | AIML
Date: | 16/3/2024 | Duration: | 90 min’s | Max Marks: |50 | Sem/Sec: | V /A OBE
Answer any FIVE FULL Questions MARKS | CO [RBT
1 \What is Turing machine? 2 Marks 10 |CO2| L2
Construct a Turing machine to accept the language L(M)={ 0"1" 2" n>=1 }
8 Marks
SOLUTION:
The transition diagram
2 Obtain a PDA to accept the language 10 |CO2| L2

L(M)={ww R| we(a+b)*} where w Ris the reverse of w. 10 Marks

SOLUTION:

Check whether the grammar is LALR(1) 4 Marks GOTO+3 Marks PT
but not SLR(1).3 Marks

S-->Aa/bAc/dc/bda

A-->d

SOLUTION:

Answer: In addition to the rules given above, one extra rule 8" — 5 as the initial item. Following the
procedures for constructing the LR{1) parser, here 15 the imitial state and the resulting state diagram by
taking closure:

Iy (005" — .5, 3 _S-'(Il'g'—’ﬁ--sj
(S—>Aas | , .
(2)S — bac, sl $ = A, § (1 S > AaS)
)5 =, § 1y 5 hac, S0 5 bac (1 S > bAc,

(5 - ba,§ |Laf 133 D0
o= &,
PRy [Sbhas) 3y (7,4S - bds, 5)
A4, .-'\—:uLL

(5)A —.da
ly 58—+ de, § [_ ‘s—nl& £
A—d.a

Based on the state diagram, we derive the LR(1) parsing table as follows:

. Action Cioto
State = - =

55
57]
[B

59

sl 3
r3
2
4

o 2SI T e e =D

Then, the LALR(1) parsing table can be obtained by merging items with common first components, In
this problem, no merging occurs. That is, the final LALR(1) parsing table is the same as the LR(1) one.
Thus, the given grammar 15 LALR(1).

Next, following the similar procedures for taking closure, but without including the lookahead in items,
we obtain the state diagram as follows:

(1)S > .Aa

(2)S = bAc —»{I S—> Aa)—»{l _,,_,_)

(3)S - de A S S BA, S > BA
(4)S — bda 5 L) G ShAC)

Iy (0)S" —.S

Let's assume that the parser is in state 15, and the next symbol is a, since a € Follows(A)=}a.c}, it causes
a shift-reduce conflict. Same problem also happens to state 4. Thus, the given grammar is not SLR(1)

10

CO2

L3

4a)

Explain with an example to generate the intermediate code for the flow of control
Statements. 3 Marks IC and 2 marks example

SOLUTION: Intermediate code is used as a bridge between the high-level
language representation of a program and the machine code generated by
the compiler or interpreter. Three-address code is a type of intermediate
code that uses instructions with at most three operands.

In three-address code, each instruction generally performs a simple
operation and can have up to three operands: one result and two operands.
The result is usually stored in a temporary variable.

Let's discuss the types of three-address statements and provide an example:

CO2

L1

Types of Three-Address Statements:

Assignment Statements: These statements assign a value to a variable.
° Example: X =y + z
e Here, y + zis computed, and the result is assigned to variable x.
Arithmetic Expressions: These involve arithmetic operations like addition,
subtraction, multiplication, and division.
e Example:tl = x + y
e Here, x + yis computed, and the result is stored in temporary
variable t1.
Conditional Statements: These statements involve conditionals and control
flow, such as if-else statements.
e Example:
if (x <y) goto L1
e else goto L2Here, the program jumps to label L1 if x < y, otherwise, it
jumps to label L2.
Jump Statements: These statements change the sequence of execution,
such as unconditional jumps.
o Example: goto L1
e Here, the program jumps to label L1 unconditionally.

Generating Intermediate Code for Flow Control
Statements:

Let's consider a simple example of generating intermediate code for a flow
control statement, specifically an if-else statement.

if (x <y){
Z=X+Y,

} else {
zZ=Xx-Y;

}

We can represent this code using three-address code as follows:

1.if x <y goto L1

2.t1 =x+y

3. goto L2

4. L1:t1 =x-y

5.L2:z = t1

Here, L1 and 12 are labels used for control flow. If x < y, the program
jumps to L1 and performs t1 = x - y. Otherwise, it continues to .2 and
performs t1 = x + y. Finally, the result is stored in variable z.

This demonstrates how control flow statements can be represented using
three-address code, providing a simpler and more manageable
representation for further optimization and code generation.

4b)

Also explain three address codes and its types. 1 Mark
How would you implement the three Address statements?2 Marks
Explain with suitable examples. 2 Marks

SOLUTION:

Three-address code (TAC) is a low-level intermediate representation used in
compilers to represent statements in a program. Each statement in three-
address code typically contains at most three operands and one operator.
The main purpose of using three-address code is to simplify complex
expressions and control structures into a form that is easier to analyze and
optimize.

Three-address code consists of the following basic types of statements:

Assignment statements: These statements assign the result of an
expression to a variable.

Example:

tl=a+b

c=tl

Example:

if a < b goto L1

Unary and binary operation statements: These statements perform
arithmetic or logical operations.

Example:
t2=a*b
t3=c-d

Address statements: These statements handle memory addresses, typically
in the context of pointers.

Example:

t4 = &a

Function call and return statements: These statements represent function
calls and returns.

Example:

call fun

Implementing three-address statements involves creating a data structure
to represent each statement and developing algorithms to generate and
manipulate these statements during compilation.

CO2

L1

Construct a canonical parsing table for the grammar given below. 10 |CO3| L2
E—E+T|T
T — TF|F
F — F x|a|b 8 Marks (4 marks GOTO, 4 Marks PT)
and parse any string derived from the grammar. 2 Marks
SOLUTION:
Closure (E—»# E} b= goto (I +] i:im gﬁ: s,
K E—=E+#T T—=Fw»
£+ oE I | T—uTF F—=F&*
L | B> mEeT T—>uF
E=aT F —=oF
T @TF F—swa
54 =2
i
[J——T | | = gota L. F)
gy =T =
I: = goto (k. T) Is = gota (s, b)
= i
F—= aF F—wam
F—w»®a
Fo—ie il I
== gota (I, F} = gota
F—+hb®
L = gota [ls, &) ls = gota (b, *)
i [F—rae b | f—sr= w
Ir = goto (ls, F)
P Ee
| = gete [b ';fgﬂ; T
F—s b® T—+TeF
o F—r® F° F—>a®
F—s®a
F—>®b
F—rhw
Action goto
State
+ | «~|lal|b $ E|T
0 s4 | s5 1 2|3
1 sb6 accept
2 r2 s4 | s5 r2 7
3 r4 | s8|rd | rd r4
4 r6 ([r6 | r6 | r6 ré
5 r6 | r6 [r6 | r6 ré
6 s4 | s5 9|3
4 r3 ([s8|r3|r3 r3
8 S |55 |rS rs
9 r1 s4 | s5 r1 7
What is a top down parser? Find LL(1)for the given grammar and draw the 10 |CO2| L2

parse table.

S->AA,

A->Aalb 8 Marks

and check for the acceptance of a string w=abab 2 Marks

SOLUTION:

madt

Kol ;—‘ A—>b
CITTTT# e ‘

1 Buffs Wlf " afr e
i g > P WRITT

QM'j Mﬂo ¥ Look O?eod
A
l el alb[f]
Ponsetable A e[S [Smison
g Bl
e O [S=de A pasmb
L ‘@ A TQ_ 2 3
Q % A e Pr
IS o
!‘f gem-
: $ le

