USN					

Internal Assessment Test 1 – March 2023

Su	ıb:	b: Computer Networks Sub Code: 21CS52 Bra							Branch:	AIMI	: AIML	
Dat		13/03/24	Duration:	90 minutes	Max Marks:	50	Sem/Sec:)BE	
	Answer any FIVE FULL Questions MARKS CO								RBT			
1	a	Explain the	format of TC	CP segment s	structure and i	mentic	on all its field	ds in detail.		[10]	4	L2
2	a	Explain the	three-way ha	andshaking f	for establishin	g a TO	CP connection	on.		[10]	4	L2
3	a	Explain the	n the services offered by DNS along with DNS record and message format. [10] 5 L2					L2				
4	a	How would you can compare: i) TCP & UDP ii) HTTP & FTP [10] 4 L2						L2				
5	a	What approach would we follow if we need a communication service to transmit real time voice over the internet? What feature of TCP & what features of UDP are appropriate.						4	L3			
	b	Compare two approaches, obtain a name from a file in a remote machine and from a					[05]	5	L3			
6	a	Is the vacation agent part of the user agent or the message transfer agent? Of course, i is set up using the user agent, but does the user agent actually send the replies? Explain your answer.							[10]	5	L3	

	C I			CCI	 HoD
USN					STORY VEARS

Internal Assessment Test 1 – March 2023

Su	Sub: Computer Networks Sub Code: 21CS52 Bi						Branc	h: AIM	1L			
Dat	te:	13/03/24	Duration:	90 minutes	Max Marks:	50	Sem/Sec:	·	Duration:			
			Ans	wer any FI	VE FULL Qı	<u>iestio</u>	<u>ns</u>			MARKS	СО	RBT
1	a	Explain the	format of TC	CP segment	structure and 1	nentic	on all its fiel	ds in detail	•	[10]	4	L2
2	a	Explain the	three-way ha	andshaking f	for establishin	g a TO	CP connection	on.		[10]	4	L2
3	a	a Explain the services offered by DNS along with DNS record and message format. [10] 5 L2						L2				
4	a	How would	you can con	npare: i) TC	P & UDP	ii) H	ITTP & FTF)		[10]	4	L2
5	a	What approach would we follow if we need a communication service to transmit real time voice over the internet? What feature of TCP & what features of UDP are appropriate.										
	b	b Compare two approaches, obtain a name from a file in a remote machine and from a DNS server of the local ISP. [05] 5 L3										

	Is the vacation agent part of the user agent or the message transfer agent? Of course, it is set up using the user agent, but does the user agent actually send the replies? Explain your answer.	[10]	5	L3
--	---	------	---	----

USN					

		Inter	nal Assess	sment Test II	–Mar	ch 2024					
Sub:	Computer Netwo	orks				Sub Code:	21CS52		Branch:	AIN	ИL
Date:	/03/2024	Duration:	90 mins	Max Marks:	50	Sem / Sec:	A	Time	08.00 - 10.00 AM	OI	BE
		Answer	any FIVE F	ULL Questions					MAR KS	СО	RB T
1	Explain the form Every TCP segn the fixed header The TCP header	nent consists of . With a heade	of a 20 byteer so that it	e fixed format l can tag up to	neader 65535	. Header o	options ma	y follow	[10]	CO 4	L2
		Data offset 4 bits CHI	Reserved U	uence Number 32 bits RG ACK U S Y N lag Flag S T N Urgent	F Win N Pointer 6 bits — (Option:	ndow					
			DA	ATA bytes							
			TCP S	egment Header							
	Source Port It is a 16-bit sou Destination Port	•	er used by	the receiver to	o reply	·.					
	It is a 16-bit des	tination port r	umber.								

Sequence Number The sequence number of the first data byte in this segment. During the SYN Control bit is set, and the sequence number is n, and the first data byte is n + 1. Acknowledgement Number If the ACK control bit is set, this field contains the next number that the receiver expects to receive. Data Offset The several 32-bit words in the TCP header shows from where the user data begins. Reserved (6 bit) It is reserved for future use. URG

It indicates an urgent pointer field that data type is urgent or not.

ACK

It indicates that the acknowledgement field in a segment is significant, as discussed early.

PUSH

The PUSH flag is set or reset according to a data type that is sent immediately or not.

RST

It Resets the connection.

SYN

It synchronizes the sequence number.

FIN

This indicates no more data from the sender.

Window

It is used in Acknowledgement segment. It specifies the number of data bytes, beginning with the one indicated in the acknowledgement number field that the receiver is ready to accept.

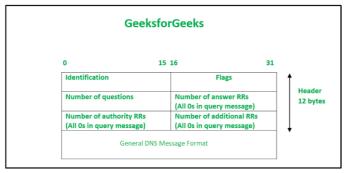
Checksum

It is used for error detection.

Options

The IP datagram options provide additional punctuality. It can use several optional parameters between a TCP sender and receiver. It depends on the options used. The length

	of the field may vary in size, but it can't be larger than 40 bytes due to the header field's size, which is 4 bit.			
2	Explain the three-way handshaking for establishing a TCP connection.	[10]	CO 4	L2
			-	
	<u>Transmission Control Protocol (TCP)</u> provides a secure and reliable			
	connection between two devices using the 3-way handshake			
	process. TCP uses the full-duplex connection to synchronize (SYN)			
	and acknowledge (ACK) each other on both sides. There are three			
	steps for both establishing and closing a connection. They are – SYN, SYN-ACK, and ACK.			
	3-Way Handshake Connection Establishment			
	Process			
	The following diagram shows how a reliable connection is established			
	using 3-way handshake. It will support communication between a			
	web browser on the client and server sides whenever a user			
	Client Server			
	Sends SYN SYN			
	Received			
	SYN+ACK Sends SYN+ACK			
	Received SYN+ACK			
	Sends ACK Received			
	ACK			
	\downarrow \downarrow navigates the Internet.			
	Step 1 (SYN): In the first step, the client wants to establish a connection with a			
	server, so it sends a segment with SYN(Synchronize Sequence Number) which			
	informs the server that the client is likely to start communication and with what			
	sequence number it starts segments with			
	• Step 2 (SYN + ACK): Server responds to the client request with SYN-ACK			
	signal bits set. Acknowledgement(ACK) signifies the response of the segment it received and SYN signifies with what sequence number it is likely to start the			
	segments with			
	• Step 3 (ACK): In the final part client acknowledges the response of the server and they both establish a reliable connection with which they will start the			
	actual data transfer			
3	Explain the services offered by DNS along with DNS record and message format.	[10]	CO 5	L2


DNS allows you to interact with devices on the Internet without having to remember long strings of numbers. Changing of information between client and server is carried out by two types of DNS messages:

- Query message
- Response message.

The format is similar for both types of messages. The information is held up in up to five different sections of DNS message format. The query message is having two sections- header and question records.

The response message consists of five sections:

- Header
- Question
- Records
- Answer records
- Authoritative records
- Additional records

- **Identification:** The identification field is made up of 16 bits which are used to match the response with the request sent from the client-side. The matching is carried out by this field as the server copies the 16-bit value of identification in the response message so the client device can match the queries with the corresponding response received from the server-side.
- Flags: It is 16 bits and is divided into the following Fields:

Here is the description of each subfield of the Flags field:

- **QR** (query/response): It is a 1-bit subfield. If its value is 0, the message is of request type and if its value is 1, the message is of response type.
- **opcode:** It is a 4-bit subfield that defines the type of query carried by a message. This field value is repeated in the response. Following is the list of opcode values with a brief description:

Di i Th	The value 5 refers to the nonexecution of queries by the server due to policy reasons. w would you can compare: i) TCP & UDP ii) HTTP & FTP fferences between TCP and UDP ne main differences between TCP (Transmission Control Protocol) and DP (User Datagram Protocol) are:	[10]	CO4	L2
	 If the value of the opcode subfield is 0 then it is a standard query. The value 1 corresponds to an inverse of query that implies finding the domain name from the IP Address. The value 2 refers to the server status request. The value 3 specifies the status reserved and therefore not used. AA: It is an Authoritative Answer. It is a 1-bit subfield that specifies the server is authoritative if the value is 1 otherwise it is non-authoritative for a 0 value. TC: It is Truncation. This is a 1-bit subfield that specifies if the length of the message exceeds the allowed length of 512 bytes, the message is truncated when using UDP services. RD: It is Recursion Desired. It is a 1-bit subfield that specifies if the value is set to 1 in the query message then the server needs to answer the query recursively. Its value is copied to the response message. RA: It is Recursion Available. It is a 1-bit subfield that specifies the availability of recursive response if the value is set to 1 in the response message. Zero: It is a 3-bit reserved subfield set to 0. rCode: It stands for Response Code. It is a 4-bit subfield used to denote whether the query was answered successfully or not. If not answered successfully then the status of error is provided in the response. Following is the list of values with their error status – The value 0 of rcode indicates no error. A value of 1 indicates that there is a problem with the format specification. Value 2 indicates server failure. Value 3 refers to the Name Error that implies the name given by the query does not exist in the domain. Value of 4 indicates that the request type is not supported by the server. 			

Basis	Transmission Control Protocol (TCP)	User Datagram Protocol (UDP)
Type of Service	TCP is a connection- oriented protocol. Connection orientation means that the communicating devices should establish a connection before transmitting data and should close the connection after transmitting the data.	UDP is the Datagram- oriented protocol. This is because there is no overhead for opening a connection, maintaining a connection, or terminating a connection. UDP is efficient for broadcast and multicast types of network transmission.
Reliability	TCP is reliable as it guarantees the delivery of data to the destination router.	The delivery of data to the destination cannot be guaranteed in UDP.
Error checking mechanism	TCP provides extensive error-checking mechanisms. It is because it provides flow control and acknowledgment of data.	UDP has only the basic error- checking mechanism using checksums.
Acknowledgment	An acknowledgment segment is present.	No acknowledgme nt segment.

			T
Sequence	Sequencing of data is a feature of Transmission Control Protocol (TCP). this means that packets arrive in order at the receiver.	There is no sequencing of data in UDP. If the order is required, it has to be managed by the application layer.	
Speed	TCP is comparatively slower than UDP.	UDP is faster, simpler, and more efficient than TCP.	
Retransmission	Retransmission of lost packets is possible in TCP, but not in UDP.	There is no retransmission of lost packets in the User Datagram Protocol (UDP).	
Header Length	TCP has a (20-60) bytes variable length header.	UDP has an 8 bytes fixed- length header.	
Weight	TCP is heavy-weight.	UDP is lightweight.	
Handshaking Techniques	Uses handshakes such as SYN, ACK, SYN-ACK	It's a connectionless protocol i.e. No handshake	
Broadcasting	TCP doesn't support Broadcasting.	UDP supports Broadcasting.	
Protocols	TCP is used by HTTP, HTTPs, FTP, SMTP and Telnet.	UDP is used by <u>DNS</u> , <u>DHCP</u> , TFTP, <u>SNMP</u> , <u>RIP</u> , and <u>VoIP</u> .	
Stream Type	The TCP connection is a byte stream.	UDP connection is a	

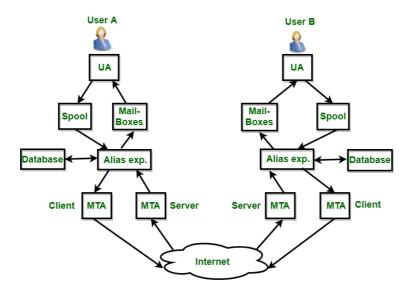
		message stream.
Overhead	Low but higher than UDP.	Very low.
Applications	This protocol is primarily utilized in situations when a safe and trustworthy communication procedure is necessary, such as in email, on the web surfing, and in military services.	This protocol is used in situations where quick communication is necessary but where dependability is not a concern, such as VoIP, game streaming, video, and music streaming, etc.

ii) HTTP & FTP

Difference between FTP and HTTP:

S.NO.	НТТР	FTP
1.	It stands for HyperText Transfer Protocol.	It stands for File Transfer Protocol
2.	It is the set of rules that how web pages are transferred on different computers over the internet.	It is the set of rules that permit the downloading and uploading the files on the computer over the internet.
3.	It only supports the data connection.	It supports both data connection and control connection
4.	It uses Transmission Control Protocol and runs on TCP port 80.	It uses Transmission Control Protocol and runs on TCP port 20 and TCP port 21.
5.	The URL using the HTTP protocol will start with HTTP.	The URL using the FTP will start with FTP.

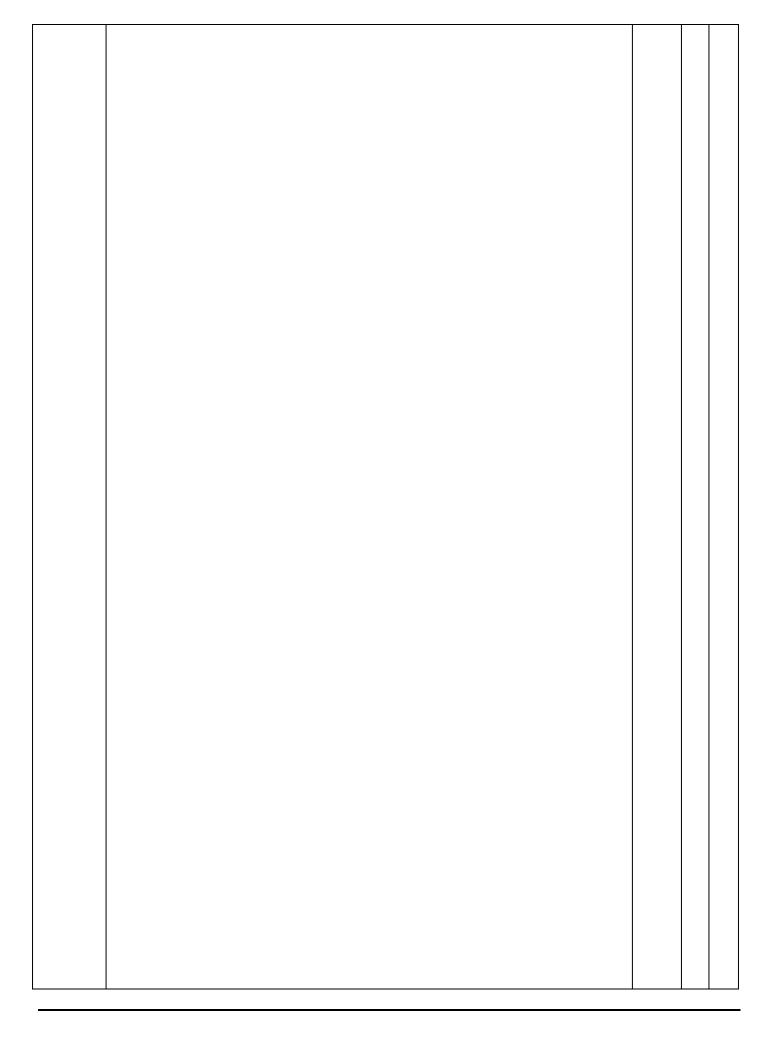
6.	6. It does not require authentication. It requires authentication.						
7.	It is efficient in transferring small files.	It is efficient in transferring large files.					
8.	The files transferred to the computer over the internet are not saved to the memory.	The files transferred to the computer over the internet are saved to the memory.					
9. HTTP is used to prowe by the web pages to the webse		FTP is used to upload or download files between client and server.					
10. It is a stateless protocol. It is not a stateless protocol and it maintains states.							
What approach would we follow if we need a communication service to transmit real time voice over the internet? What feature of TCP & what features of UDP are appropriate. For real-time services like computer gaming, voice or video communication, and live conferences; we need UDP. Since high performance is needed, UDP permits packets to be dropped instead of processing delayed packets. There is no error checking in UDP, so it also saves bandwidth. Real-time data transmission applications typically use UDP as the transport protocol.							
For example, the Real-time Transport (RTP) protocol uses UDP. The service model offered by UDP is more suitable for audio/video transmission than the service model offered by TCP.							
Let's focus on the characteristics and requirements of the real-time audio/video applications and try to understand why the service model offered by UDP is more suitable.							
Typically, in real-time applications, your client receives packets from a server. These packets contain fragments of the audio/video that you are watching. Each packet contains a few milliseconds of audio or a few video frames.							
When a audio fragment or video frame is to be played, the packet containing that fragment/frame must have already arrived at your client. Otherwise, your client will have to pause the audio/video while waiting to receive the required fragment/frame. The problem can be mitigated by using buffering (for example, the approach used by YouTube). But it is important to have a low delay in data transfer for real-time audio/video applications.							


TCP.						
	ТСР	UDP				
Multiplexing/Demultiplexing	Yes	Yes				
Error detection Reliable packet delivery	Yes	Yes				
Ordered packet delivered	Yes Yes	No No				
		No				
Congestion control Flow control	Yes	No				
Flow control	Yes	INO				
retransmission mechanic each packet the client not moreover, TCP provides control reduces the sense occurs. Flow control reduces packets control increase the delation of these are the reasons with this is not mandatoric data transmission.	eeds to send are congestion conding rate of the luces the sendire at high rates. But ay.	n ACK) and increase ntrol and flow con server when netwag orate of the serve oth congestion comme audio/video a	ses delay. atrol. Congestion work congestion er when your clier antrol and flow pplications use UI	nt OP.		
Compare two approaches	s, obtain a name	from a file in a ren	note machine and	[5]	CO 5	L3

Is the vacation agent part of the user agent or the message transfer agent? Of 6 CO course, it is set up using the user agent, but does the user agent actually send the 5 replies? Explain your answer. Electronic mail, commonly known as email, is a method of exchanging messages over the internet. Here are the basics of email: 1. An email address: This is a unique identifier for each user, typically in the format of name@domain.com. 2. An email client: This is a software program used to send, receive and manage emails, such as Gmail, Outlook, or Apple Mail. 3. An email server: This is a computer system responsible for storing and forwarding emails to their intended recipients. To send an email: 1. Compose a new message in your email client. 2. Enter the recipient's email address in the "To" field. 3. Add a subject line to summarize the content of the message. 4. Write the body of the message. 5. Attach any relevant files if needed. 6. Click "Send" to deliver the message to the recipient's email server. 7. Emails can also include features such as cc (carbon copy) and bcc (blind carbon copy) to send copies of the message to multiple recipients, and reply, reply all, and forward options to manage the conversation. **Electronic Mail** (e-mail) is one of most widely used services of Internet. This service allows an Internet user to send a **message in formatted** manner (mail) to the other Internet user in any part of world. Message in

Electronic Mail (e-mail) is one of most widely used services of Internet. This service allows an Internet user to send a message in formatted manner (mail) to the other Internet user in any part of world. Message in mail not only contain text, but it also contains images, audio and videos data. The person who is sending mail is called sender and person who receives mail is called recipient. It is just like postal mail service. Components of E-Mail System: The basic components of an email system are: User Agent (UA), Message Transfer Agent (MTA), Mail Box, and Spool file. These are explained as following below.

- 1. User Agent (UA): The UA is normally a program which is used to send and receive mail. Sometimes, it is called as mail reader. It accepts variety of commands for composing, receiving and replying to messages as well as for manipulation of the mailboxes.
- 2. **Message Transfer Agent (MTA) :** MTA is actually responsible for transfer of mail from one system to another. To send a mail, a system must have client MTA and system MTA. It transfer mail to mailboxes of recipients if they are connected in the same machine. It delivers mail to peer MTA if


destination mailbox is in another machine. The delivery from one MTA to another MTA is done by <u>Simple Mail Transfer</u> Protocol.

- 1. **Mailbox**: It is a file on local hard drive to collect mails. Delivered mails are present in this file. The user can read it delete it according to his/her requirement. To use e-mail system each user must have a mailbox. Access to mailbox is only to owner of mailbox.
- 2. **Spool file:** This file contains mails that are to be sent. User agent appends outgoing mails in this file using SMTP. MTA extracts pending mail from spool file for their delivery. E-mail allows one name, an **alias**, to represent several different e-mail addresses. It is known as **mailing list**, Whenever user have to sent a message, system checks recipient's name against alias database. If mailing list is present for defined alias, separate messages, one for each entry in the list, must be prepared and handed to MTA. If for defined alias, there is no such mailing list is present, name itself becomes naming address and a single message is delivered to mail transfer entity.

Services provided by E-mail system:

- Composition The composition refer to process that creates messages and answers. For composition any kind of text editor can be used.
- **Transfer** Transfer means sending procedure of mail i.e. from the sender to recipient.
- **Reporting** Reporting refers to confirmation for delivery of mail. It help user to check whether their mail is delivered, lost or rejected.
- **Displaying** It refers to present mail in form that is understand by the user.
- **Disposition** This step concern with recipient that what will recipient do after receiving mail i.e save mail, delete before reading or delete after reading.

CO PO Mapping

CO-PO and **CO-PSO** Mapping

	CO-PO and CO-PSO Mapping																		
Course Outcomes		Blo oms Lev el	Mo dule s cove red	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 1 0	P O 1 1	P O 1 2	P S O 1		P S O 3	P S O 4
CO1	Analyze and compare various networking protocols.	L1	7,8, 9,10 ,11, 12	2	-	-	-	-	-	-	1	1	-	-	2	1	2	-	_
CO2	Demonstrate the working of different concepts of networking	L2	7,8, 9,10 ,11, 12	2	3	3	-	-	-	-	1	1	-	-	2	ı	2	-	_
CO3	Implement, analyze and evaluate networking protocols in NS2 / NS3 and JAVA programming language	L3	1,2, 3,4, 5,6	2	2	3	-	-	-	-	1	1	-	-	2	1	2	1	-

COGNITIVE
LEVEL

L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PR	ORRELATION LEVELS								
PO1	Engineering knowledge	PO7	Environment and sustainability	0	No Correlation				
PO2	Problem analysis	PO8	Ethics	1	Slight/Low				
PO3	Design/development of solutions	PO9			Moderate/ Medium				
PO4	Conduct investigations of complex problems	PO10			Substantial/ High				
PO5	Modern tool usage								
PO6	The Engineer and society	PO12	Life-long learning						
PSO1	Develop applications using differe	nt stacks	of web and programming technologies	es					
PSO2	Design and develop secure, parallel, distributed, networked, and digital systems								
PSO3	Apply software engineering method	ds to des	sign, develop, test and manage softwar	re sys	tems.				
PSO4	Develop intelligent applications for business and industry								