CMR

INSTITUTE OF USN
TECHNOLOGY
Internal Assessment Test 3— Mar. 2024
Sub: Advanced Java& J2EE CSoL:jt()e' 22MCA341
Date: | 13/3/2024 | Duration: | 90 min’s | Max Marks: [50 | Sem: | 11l | Branch: MCA
Note : Answer FIVE FULL Questions, choosing ONE full question from each Module
OBE
PART I MARKS
(0] RBT
1 Explain exception and methods that are provided in collection interface. 10 Cco1 L2
OR
2. Create a class STUDENT with 2 private string members : USN,NAME using 10 CO2 L4
LinkedList class in java. Write a program to add atleast 3 objects of above
STUDENT class. Also display the data in neat format.
PART II
3 Explain the following methods of StringBuffer class. 10 Co1 L2
i)append() ii)insert() iii)reverse() iv)replace()
OR
4. Explain the constructors of TreeSet class and write a java program to create 10 |CO1,COZ L2
TreeSet collection and access via iterator.
CMR
INSTITUTE OF USN
TECHNOLOGY
Internal Assessment Test 3— Mar. 2024
Sub: Advanced Java& J2EE CSO‘QZ_ 22MCA341
Date: | 13/3/2024 | Duration: | 90 min’s | Max Marks: [50 | Sem: |11l | Branch: MCA
Note : Answer FIVE FULL Questions, choosing ONE full question from each Module
OBE
PART I MARKS
CcoO RBT
1 Explain exception and methods that are provided in collection interface. 10 Cco1 L2
OR
2. Create a class STUDENT with 2 private string members : USN,NAME using 10 CO2 L4
LinkedList class in java. Write a program to add atleast 3 objects of above
STUDENT class. Also display the data in neat format.
PART Il
3 Explain the following methods of StringBuffer class. 10 Co1 L2
i)append() ii)insert() iii)reverse() iv)replace()
OR
4, Explain the constructors of TreeSet class and write a java program to create 10 |CO1,CO2 L2
TreeSet collection and access via iterator.

Page 1 of 2

10

10

PART I11
Explain the following legacy classes with an example. i)HashTable ii)Vector
OR

Write a program to check if two accepted strings are the rotation of each other. A
string is said to be a rotation of other string if they contain same characters and the
sequence is rotated across any character. Example “dabc” is a rotation of “abcd”
but “dbac” is not.

PART IV
Define String Handling? Explain Special string operations with example.

OR
Explain the following collection interfaces.
1) Queue ii)SortedSet

PART V
Explain ArrayList class and explain following methods:
i)binarysearch ii)copyOf() iii)equals() iv)fill
OR

Write a program to find the first repeated and non-repeated character in a given
string.

PART Il
Explain the following legacy classes with an example. i)HashTable ii)Vector
OR

Write a program to check if two accepted strings are the rotation of each other. A
string is said to be a rotation of other string if they contain same characters and the
sequence is rotated across any character. Example “dabc” is a rotation of “abcd”
but “dbac” is not.

PART IV
Define String Handling? Explain Special string operations with example.

OR
Explain the following collection interfaces.
i) Queue ii)SortedSet

PART V
Explain ArrayList class and explain following methods:
i)binarysearch ii)copyOf() iii)equals() iv)fill
OR

Write a program to find the first repeated and non-repeated character in a given
string.

Page 2 of 2

10 CO1l| L2
10 COo2| L4
10 COl| L2
10 CO1l| L2
10 [CO1 L2
10 COo2| L4
10 CO1l| L2
10 CO2| L4
10 CO1| L2
10 CO1| L2
10 |CO1 L2
10 COo2| L4

1. Explain exception and methods that are provided in collection interface.

The methods defined by collection are

Method Description

boolean add(E oby) Adds oby to the invoking collection. Returns troe il oby was added
o thir collection. Retums false if oby is already a member of the
collection and the collection does not allow duplicates.

boolean addAll{Collection<? extends E= ¢} |Adds all the elements of ¢ to the invoking collection. Returns true
il ther operation succeeded (i.e., the elements wera added).
Otherwise, returns false.

void clear) Remowas all elements from the invoking collection.

boolean contains(Object oby) Returns trua if objfis an elemeant of the invoking collection.
Otherwise, returns false.

boolean containsAlliCollection<7= ¢) Returns trua if the invoking collection contains all elements
of . Otherwise, returns false.

boolean eguals{Object oby) Returns true if the invoking collection and oby are equal.
Otharwise, returns false.

int hashCode{) Returns the hash code for the invoking collection.

boolean isEmply|) Returms true if the invoking collection is emply. Otherwise,
returns false.

Iterator<E= iterator) Returns an iterator for the invoking collection.

boolean Fﬂlﬂﬂmlﬂl.'l_ir_‘ﬂ by} Remdowes o instance of oby from the invoking collection. Returns
true if the element was removed. Otherwise, returns false.

boolean removeAll|Collaction<7> c) Remowas all elements of ¢ fram the invoking collection. Returns

true if the collection changed (lLe., elaments were removed).
Otherwise, returns false.

boolean retainAll{Collection<?> £ Removas all elements from the imoking collection axcapt those
in ¢. Returns true if the collection changed (i.e., elements wera
removed). Otherwige, returns false.

int size|) Returns the number of elements held in the invoking collection.

Object] | toArray|) Returne an array that contains all the elements stored in the
invoking eollection. The array elements are copies of the
collection elements.

<T=T| | toArray(T array 1) Returns an array that contains the elements of the invoking
collection. The array elements are copias of the collection
elements. If the size of array equals the number of elements,
these are returned in array. If the size of array is less than the
number of elemeants, a new array of the necessary size is allocated
ared returned. If the size of array is greater than the number of
elerments, the array element fallowing the last collection aberment
is sat 1o null. An ArayStoreException is thrown if any collection
elerment has a type that is not a subtype of array:

TaBLE 171 The Methods Defined by Collectlon

In Java, the Collections interface doesn't directly raise exceptions itself since it's an interface and doesn't provide implementation.
However, the classes that implement the Collections interface (like List, Set, Map, etc.) can raise various exceptions depending
on the operation being performed. Some common exceptions raised during collection operations include:

1. NullPointerException: This is commonly thrown when attempting to perform an operation on a null object reference, such as
adding a null element to a collection that doesn't support null elements.

2. ClassCastException: This exception is thrown when attempting to add an element of an incompatible type to a collection. For
example, trying to add a String to a collection of Integers.

3. lllegal ArgumentException: This exception can be thrown for various reasons, such as trying to add an element to a collection
that violates its constraints or passing an illegal argument to a method.

4. UnsupportedOperationException: This exception indicates that an unsupported operation was attempted on a collection. For
example, trying to modify an immutable collection or removing an element from an unmodifiable collection.

5. **ConcurrentModificationException**: This exception occurs when a collection is modified while it is being iterated over by a
different thread. This can happen, for example, if elements are added or removed from a collection while it is being iterated over

using an iterator.
Page 3 of 2

These are some of the common exceptions raised during collection operations in Java. The specific exceptions raised may vary
depending on the implementation and usage context. It's important to handle these exceptions appropriately in our code to ensure
robustness and reliability.

2. Create a class STUDENT with 2 private string members : USN,NAME using
LinkedL.ist class in java. Write a program to add atleast 3 objects of aboveSTUDENT class. Also display the
data in neat format.

import java.util.LinkedList;
import java.util.lterator;

class Student {
private String USN;
private String name;

public Student(String USN, String name) {
this.USN = USN;
this.name = name;

}

public String getUSN() {
return USN;

}

public String getName() {
return name;

¥
¥

public class Main {
public static void main(String[] args) {
LinkedList<Student> students = new LinkedList<>();

students.add(new Student("1", "Alice"));
students.add(new Student("2", "Bob"));
students.add(new Student("3", "Charlie"));

System.out.printin("Student Details:");
System.out.printIn(*---------------- ");
Iterator<Student> iterator = students.iterator();
while (iterator.hasNext()) {
Student student = iterator.next();
System.out.printIn("USN: " + student.getUSN() + ", Name: " + student.getName());

¥
¥
¥

2. Explain the following methods of StringBuffer class.i)append() ii)insert()
iii)reverse() iv)replace()
i)append()
The append() method concatenates the string representation of any other type of data
to the
end of the invoking StringBuffer object. It has several overloaded versions. Here are a
few

Page 4 of 2

of its forms:

StringBuffer append(String str)

StringBuffer append(int num)

StringBuffer append(Object obj)

String.valueOf() is called for each parameter to obtain its string representation. The
result is appended to the current StringBuffer object. The buffer itself is returned by
each

version of append(). This allows subsequent calls to be chained together, as shown in
the

following example:

/I Demonstrate append().

class appendDemo {

public static void main(String args[]) {

String s;

inta =42;

StringBuffer sb = new StringBuffer(40);

s = sh.append(a = ").append(a).append(*!").toString();

System.out.printin(s);

}

by

i)insert()

The insert() method inserts one string into another. It is overloaded to accept values of all the simple types, plus
Strings, Objects, and CharSequences. Like append(), it calls String.valueOf() to obtain the string representation
of the value it is called with. This string is then inserted into the invoking StringBuffer object. These are a few of
its forms:

StringBuffer insert(int index, String str)

StringBuffer insert(int index, char ch)

StringBuffer insert(int index, Object obj)

Here, index specifies the index at which point the string will be inserted into the invoking StringBuffer object.
The following sample program inserts “like” between “I”” and “Java™:

// Demonstrate insert().

class insertDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("l Java!");

sb.insert(2, "like ");

System.out.printIn(sb);

by

¥

ii)reverse()

You can reverse the characters within a StringBuffer object using reverse(), shown here:
StringBuffer reverse()

This method returns the reversed object on which it was called.
The following program demonstrates reverse():

/I Using reverse() to reverse a StringBuffer.

class ReverseDemo {

public static void main(String args[]) {

StringBuffer s = new StringBuffer("abcdef");
System.out.printin(s);

s.reverse();

System.out.printin(s);

¥
¥

Page 5 of 2

iv)replace()
You can replace one set of characters with another set inside a StringBuffer object by
calling
replace(). Its signature is shown here:
StringBuffer replace(int startindex, int endIndex, String str)
The substring being replaced is specified by the indexes startindex and endIndex.
Thus, the
substring at startIndex through endIndex1 is replaced. The replacement string is passed
in — str.
The resulting StringBuffer object is returned.
The following program demonstrates replace():
/I Demonstrate replace()
class replaceDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("This is a test.");
sb.replace(5, 7, "was");
System.out.printIn("After replace: " + sb); } }
4. Explain the constructors of TreeSet class and write a java program to create
TreeSet collection and access via iterator.
TreeSet extends AbstractSet and implements the NavigableSet interface. It creates a
collection that uses a tree for storage. Objects are stored in sorted, ascending order. Access
and retrieval times are quite fast, which makes TreeSet an excellent choice when storing large
amounts of sorted information that must be found quickly.
TreeSet is a generic class that has this declaration:
class TreeSet<E>
Here, E specifies the type of objects that the set will hold.
TreeSet has the following constructors:
TreeSet()
TreeSet(Collection<? extends E> c)
TreeSet(Comparator<? super E> comp)
TreeSet(SortedSet<E> ss)
The first form constructs an empty tree set that will be sorted in ascending order according
to the natural order of its elements. The second form builds a tree set that contains the elements
of c. The third form constructs an empty tree set that will be sorted according to the comparator
specified by comp. (Comparators are described later in this chapter.) The fourth form builds
a tree set that contains the elements of ss
import java.util. TreeSet;
import java.util.lterator;

public class Main {
public static void main(String[] args) {
TreeSet<String> treeSet = new TreeSet<>();

// Adding elements to the TreeSet
treeSet.add("Apple™);
treeSet.add("Banana”);
treeSet.add("Orange");
treeSet.add("Grapes");

/I Accessing elements using iterator
System.out.printin("Elements in TreeSet:");
System.out.printin(*-------------------- ");
Iterator<String> iterator = treeSet.iterator();
while (iterator.hasNext()) {

String element = iterator.next();
Page 6 of 2

System.out.printin(element);

¥

}
¥
5. Explain the following legacy classes with an example. i)HashTable ii)VVector
Hashtable stores key/value pairs in a hash table. However, neither keys
nor values can be null. When using a Hashtable, you specify an object that is used as a key,
and the value that you want linked to that key. The key is then hashed, and the resulting
hash code is used as the index at which the value is stored within the table.
Hashtable was made generic by JDK 5. It is declared like this:
class Hashtable<K, V>
Here, K specifies the type of keys, and V specifies the type of values.
A hash table can only store objects that override the hashCode() and equals() methods
that are defined by Object. The hashCode() method must compute and return the hash code
for the object. Of course, equals() compares two objects. Fortunately, many of Java’s built-in
classes already implement the hashCode() method. For example, the most common type of
Hashtable uses a String object as the key. String implements both hashCode() and equals().
The Hashtable constructors are shown here:
Hashtable()
Hashtable(int size)
Hashtable(int size, float fillRatio)
Hashtable(Map<? extends K, ? extends V> m)

Method Description

woid elear]) Resets and emplies the hash table.

Object clome) Returns a duplicate of the invoking object.

boalean cantaing{Object value) |Returns trua if some value equal to value exists within the hash table.

Returns false if the value isn't found.

boolean containsKeyObject kay) Returns true if some key equal to key exists within the hash table.
Raturns false if the key isnt found.

boalaan containsValus Oyect value) | Returns tiie if some vales aqual to value exists within the hash table.
Returns falsa if the value isn't fownd.

Enumeration=yv>= akmeants| 'I Returns an enumearation of the valuoes contained in the hash tabla.
V get{Object key) Returns the object that contains the value associated with ke
If key is not in the hash table, a null object is returned.
boalean isEmpty]) Faturns trua if the hash table is emply; returns false il it contains
at least one ke,
Ll I’
Enumeration< k- I-':E:jI'SI:] Returns an enumeration of the HE:}'S contained in the hash table.
V putiK key, V value) Inserts a key and a value into the hash table. Returns null if key isn't

already in the hash table; returns the previous value associated with
key If key is already in the hash table.

wond rahash() Incréasas the siza of tha hash table and rehashas all of ts keys.

v I"EI“I'IE:-'-"E':GU]EEi k[‘-‘}-fl LHEI“I'IEIW‘E— .l[E‘-'_Ir' and its value, Returns the value associated with .F':E"J.".
If key is not in the hash table, a null object is returned.

Int SiBa() LHG'[IJI"I"IS the number of @ntries in the hash table.

String toString|) Returns the string equivalent of a hash table.

TABLE 1718 The Legacy Methods Defined by Hashtable

Page 7 of 2

import java.util.*;

class HTDemo2 {

public static void main(String args[]) {
Hashtable<String, Double> balance = new Hashtable<String, Double>();
String str;

double bal,

balance.put("John Doe", 3434.34);
balance.put(*Tom Smith", 123.22);
balance.put("Jane Baker", 1378.00);
balance.put("Tod Hall", 99.22);
balance.put(Ralph Smith", -19.08);

I/ Show all balances in hashtable.

/I First, get a set view of the keys.
Set<String> set = balance.keySet();

I/ Get an iterator.

Iterator<String> itr = set.iterator();
while(itr.hasNext()) {

str = itr.next();

System.out.printin(str + ": " +
balance.get(str));

System.out.printin();

// Deposit 1,000 into John Doe's account.

bal = balance.get("John Doe");
balance.put(*John Doe", bal+1000);
System.out.printin(*John Doe's new balance: " +
balance.get("John Doe"));

¥
¥

ii)Vector

Vector implements a dynamic array. It is similar to ArrayList, but with two differences: Vector is synchronized, and it contains
many legacy methods that are not part of the Collections Framework. With the advent of collections, Vector was reengineered to
extend AbstractList and to implement the List interface. With the release of JDK 5, it was retrofitted for generics and
reengineered to implement Iterable. This means that Vector is fully compatible with collections,

and a Vector can have its contents iterated by the enhanced for loop.

Vector is declared like this:

class Vector<e>

Here, E specifies the type of element that will be stored.

Here are the Vector constructors:

Vector()

Vector(int size)

Vector(int size, int incr)

Vector(Collection<? extends E> c)

Page 8 of 2

Mlethod Description

woid addElemeaniiE alonmaeert) The obhject specified by afament is added to the wecior.

imt capacityl b Returns the capacity of the wector.

Object clone(|} Returns a duplicate of the inweking wecbor

boolean contains]{Ohgect slanrherl) Returns tree if elsment is contained by the vector. and retums false if it is not

vold copylnmtolObject arrap 1) The slements contained in the invoking vector are copied into the array
specified by array

E elementAt(int Andex) Returns the slement at the ocation specified by index.

Enurmeration=E> alements| } Returns an enumserstion of the elements in the wector.

viold ensuraCapacityint sizea) Sete the minmum capacity of the wactor b sims.

E firstElement] } Returns the first elemeant in the vector.

Int indexdfObject afemeant) Returns the index of the first occurrence of afemeant. i the object is not in the
wvactor, —1 is returmned.

int indexdfObject aelevmeant, INt stavt) Returns the index of the first ocowmencs of alevmment at or after stavt. If the object
= not in that portion of the vactor, —1 is returned.

wold insertElementiil E elennsnt, Adds slenrment to the wechor at the location specified by fmoes.

int frnatex)

boolaean isEmptyl § Returns tree i the vactor is emply, and returns false if it containe one or Mmeore
alemants.

E lastElamenti | Returns the last element n e wector.

it |lastindeslf| OHogect adanmand) Returns the index of the least occurrence of aament. If the object is ot o the
vecbhnr, —1 Is returned.

It |astindesslf| CHogesct adonmed, Returns the index of the last cccurrence of aoment before start. IF the oibject
int =cart) s not in that portion of the wvector, —1 is returnead.
void removeAllElements{ | Empties the wector. After this method executes. the size of the wvector is zero.
boolean removeElementiiObject afemeant) Removes afermant fromm the vector. if more than one instansce of the specified
object exists n the wactor, then it is the first one that is removed. Returns
ttrue if swcocessful and false if the object is mot fouwmnd.

void remove ElsmentAtlint index) Remowes the element at the location specified by rdex.
void setElementAlE slonmerit, The location specified by madex s assigned aliemeant.
vt dndiead

vold setSizelint size) Sets the mumber of slements o the wector to size. If the new size is less than
the old sizs, elements are lost. IFf the naw size is larger than the obd size, malll
aelemeants are added.

it cwrrantly hobds.

int =ize|) Returns the numiber of elements currenthy in the wector.
Sbring toStringl | Returns the string equivalent of the wvector.
void trimToSize() Sets the wector's capacity egual to the number of elkements that

TABLE 17-15 The Legacy Methods Defined by Vector

// Demonstrate various Vector operations.

import java.util.*;

class VectorDemo {

public static void main(String args[]) {

// initial size is 3, increment is 2

Vector<Integer> v = new Vector<Integer>(3, 2);
System.out.printIn("Initial size: " + v.size());
System.out.printIn("Initial capacity: " +
v.capacity());

v.addElement(1);

v.addElement(2);

v.addElement(3);

v.addElement(4);

System.out.printIn(*Capacity after four additions: " +
v.capacity());

v.addElement(5);

System.out.printIn("Current capacity: " +
v.capacity());

v.addElement(6);

v.addElement(7);

System.out.printin("Current capacity: " +
v.capacity());

v.addElement(9);

v.addElement(10);

System.out.printin("Current capacity: " +
v.capacity());

v.addElement(11);

v.addElement(12);

System.out.printIn("First element: " + v.firstElement());
System.out.printIn("Last element: " + v.lastElement());

Page 9 of 2

if(v.contains(3))

System.out.printIn(Vector contains 3.");

I/l Enumerate the elements in the vector.
Enumeration VEnum = v.elements();
System.out.printin("\nElements in vector:");
while(vVEnum.hasMoreElements())
System.out.print(vEnum.nextElement() + " ");
System.out.printin();

ky
¥

6. Write a program to check if two accepted strings are the rotation of each other. A string is said to be a
rotation of other string if they contain same characters and thesequence is rotated across any character.
Example “dabc¢” is a rotation of “abced” but “dbac” is not.

// Java program to check if two given strings are

// rotations of each other

class StringRotation {

/* Function checks if passed strings (strl and str2)
are rotations of each other */
static boolean areRotations(String strl, String str2)

/I There lengths must be same and str2 must be

/I a substring of strl concatenated with strl.

return (strl.length() == str2.length()) &&
((strl + strl).contains(str2));

}

// Driver method
public static void main(String[] args)

{
String strl = "AACD";
String str2 = "ACDA";
if (areRotations(strl, str2))
System.out.printIn("Yes");
else
System.out.printf("No");
¥

¥

7. Define String Handling? Explain Special string operations with example.

Page 10 of

Method

Description

int codePointAt{int

Returns the Unicode code point at the loeation specified by i
Added by J25E 5.

int eodePointBafore(int /)

int eodePointCountiint start, int end)

Returms the Unicode code point at the location that preacedes
that specified by ;. Added by J25E 5.

Returns the number of code points in the portion of the inveking
String that are between start and end-1. Added by J25E 5.

boolean contains(CharSequence sir)

Returns true if the invoking object contains the string specified
by =tr. Returns false, otherwise. Added by J25E 5.

boolean contentEquals(CharSequence st

boolean contentEquals(StringBuffer str)

Returns true if the invoking string contains the same string as
sir. Otharwise, returns false. Added by J125E 5.

Returns true if the invoking string contains the same siring as
slr. Otharwise, returns falsa.

static String format{String fmistr,
Object ... args)

Returns a string formatted as specified by fmistr (See Chapter 18
for details on formatting.) Added by 125E 5.

static String format{Locale loc,
String fmistr,
Object ... args)

Returns a string formatted as specified by fmistr. Formatting
is governed by the locale specified by loc. (See Chapter 18 for
details on formatting.) Added by J2SE 5.

boolean matehes(string regExp)

Rieturns true if the invoking string matches the regular expression
passed in regExp. Otherwise, raturns falsa.

int affsetByCodePoints(int start, int murm)

Rieturns the index with the imoking string that i num code paints
beyond the starting index specified by start. Added by J2SE 5.

String] | split(String regExp)

String Returns a string in which the first substring that matchas the
replaceFirst|String regExp, regular expression specified by regExp is replaced by newsStr.
String newstr)
String Returns a string in which all substrings that match the regular
replacedll{ String regExp, expression specified by regExp are replaced by newStr.
String newStr)
Method Description

Decomposes the invoking string into parts and returns an array
that contains the result. Each part is delimited by the regular
expression passed in regExp.

String] | splitiString regExp, int max)

CharSequence
subSequencelint startindex,
int stopindex)

Decomposes the inveking string into parts and returns an array
that contains the result. Each part is delimited by the regular
expression passed in regExp. The number of pieces is specified
by max. If max is negative, then the invoking string is Tully
decompesed. Otherwise, il max contains a nonzero value,

the last antry in the returned array contains the remainder

of the invoking string. If max is zero, the invoking string is

fully decomposed.

Returns a substring of the invoking string, beginning at startindex
and stopping at stopindex. This method is required by the
CharSequence interface, which is now implemented by String.

8. Explain the following collection interfaces.

i) Queue ii)SortedSet
i)Queue

ii)The SortedSet Interface

The SortedSet interface extends Set and declares the behavior of a set sorted in ascending
order. SortedSet is a generic interface that has this declaration:

interface SortedSet<E>

Here, E specifies the type of objects that the set will hold.

In addition to those methods defined by Set, the SortedSet interface declares the methods
summarized in Table 17-3. Several methods throw a NoSuchElementException when no
items are contained in the invoking set. A ClassCastException is thrown when an object

is incompatible with the elements in a set. A NullPointerException is thrown if an attempt is
made to use a null object and null is not allowed in the set. An Illegal ArgumentException

is thrown if an invalid argument is used.

SortedSet defines several methods that make set processing more convenient. To obtain

Page 11 of

the first object in the set, call first(). To get the last element, use last(). You can obtain a subset
of a sorted set by calling subSet(), specifying the first and last object in the set. If you need

the subset that starts with the first element in the set, use headSet(). If you want the subset

that ends the set, use tailSet().

Method Description

Comparatar<? super E> comparator|) | Retums the invoking sorted set's comparator, If the riatural ordering
15 used for this set, null 15 returned.

E first{) Returns the first element in the invoking sorted set,

SortedSet<E> headSet(E end) Returns a SortedSet containing those elements less than end that
are contained in the imvoking sorted set. Elements in the returned
sorted set are also referenced by the invoking sorted sat.

E lasti) Returns thir last elemaent in the invoking sorted set.

SortedSet<E> subSet(E start, E end) |Returns a SortedSet that includes those elements batween start
and end-1. Elements in the returned collection are also referenced
by the invoking objeet.

SortedSet<E= tailSetE start) Returns a SortedSet that contains those elements greater than o
wqual to start that are contained in the sorted set. Elerments in the
returned set are also referenced by the inveking ebject.

TABLE17-3 The Methods Defined by SortedSet

i) The Queue Interface

The Queue interface extends Collection and declares the behavior of a queue, which is often a first-in, first-out list. However,
there are types of queues in which the ordering is based upon other criteria. Queue is a generic interface that has this declaration:
interface Queue<E>

Method Description

E alement]) Returns the alement at the head of the queue. The element is not removed. It throws
NoSuchElementException if the queue is empty.

boolean offer(E oby) | Attempts to add ofy to the queue. Returns true if obj was added and false otherwise.

E peek) Returns the element at the head of the queue. It retums null if the queue is empty.
The element is not removed.

E poll() Returns the element at the head of the queus, remaving the element in the process. It
returns aull if the queue is empty.
E remave) Removes the element at the head of the queue, returing the element in the process.

It thiows NeSuchElementException if the queue is emply.

TABLE175 The Methods Defined by Queue

Several methods throw a ClassCastexception when an object IS Incompatible with the elements In the queue. A
NullPointerException is thrown if an attempt is made to store a null object and null elements are not allowed in the queue. An
Illegal ArgumentException is thrown if an invalid argument is used. An IllegalStateException is thrown if an attempt is made to
add an element to a fixed-length queue that is full. A NoSuchElementException is thrown if an attempt is made to remove an
element from an empty queue.

9. Explain ArrayL.ist class and explain following methods:
i)binarysearch ii)copyOf() iii)equals() iv)fill

Page 12 of

i)binarysearch()

Searches for value in list ordered according to c. Returns the position of value in list, or a negative value if value is not
found.

Syntax: static int binarySearch(List list, T value, Comparator <? Super T> c)
ii)copyOf()

The copyOf() method was added by Java SE 6. It returns a copy of an array and has the
following forms:

static boolean[] copyOf(boolean[] source, int len)

static byte[] copyOf(byte[] source, int len)

static char[] copyOf(char[] source, int len)

static double[] copyOf(double[] source, int len)

static float[] copyOf(float[] source, int len)

static int[] copyOf(int[] source, int len)

static long[] copyOf(long[] source, int len)

static short[] copyOf(short[] source, int len)

static <T> T[] copyOf(T[] source, int len)

static <T,U> T[] copyOf(U[] source, int len, Class<? extends T[]> result T)

iii)equals()

The equals() method returns true if two arrays are equivalent. Otherwise, it returns false.
The equals() method has the following forms:

static boolean equals(boolean arrayl[], boolean array2[1)

static boolean equals(byte arrayl[], byte array2[])

static boolean equals(char arrayl[], char array2[])

static boolean equals(double arrayl[], double array2[])

static boolean equals(float arrayl[], float array2[])

static boolean equals(int arrayl[], int array2[])

static boolean equals(long arrayl[], long array2[])

static boolean equals(short arrayl[], short array2[])

static boolean equals(Object array1[], Object array2[])

iv)fill()

The fill() method assigns a value to all elements in an array. In other words, it fills an
array with a specified value. The fill() method has two versions. The first version, which
has the following formes, fills an entire array:

static void fill(boolean array|[], boolean value)

static void fill(byte array[], byte value)

static void fill(char array[], char value)

static void fill(double array[], double value)

static void fill(float array[], float value)

static void fill(int array[], int value)

static void fill(long array[], long value)
(

static void fill(short array[], short value)
static void fill(Object array[], Object value)
10.Write a program to find the first repeated and non-repeated character in a givenstring.
import java.util. HashMap;
import java.util.Map;
import java.util.Scanner;

public class Main {

public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter a string: ");
String input = scanner.nextLine();
Page 13 of

char firstRepeatedChar = findFirstRepeatedChar(input);
char firstNonRepeatedChar = findFirstNonRepeatedChar(input);

System.out.printIn("First repeated character: " + (firstRepeatedChar !="\0' ? firstRepeatedChar : "None™));
System.out.printIn("First non-repeated character: " + (firstNonRepeatedChar !="\0' ? firstNonRepeatedChar : "None"));

¥

public static char findFirstRepeatedChar(String str) {

Map<Character, Integer> charCountMap = new HashMap<>();
for (char c : str.toCharArray()) {

charCountMap.put(c, charCountMap.getOrDefault(c, 0) + 1);
¥
for (char c : str.toCharArray()) {

if (charCountMap.get(c) > 1) {

return c;

¥

}

return "\0'; // No repeated character found

¥

public static char findFirstNonRepeatedChar(String str) {

Map<Character, Integer> charCountMap = new HashMap<>();
for (char c : str.toCharArray()) {

charCountMap.put(c, charCountMap.getOrDefault(c, 0) + 1);
}
for (char c : str.toCharArray()) {

if (charCountMap.get(c) == 1) {

return c;

¥

return \0'; // No non-repeated character found

¥

Page 14 of

