
Page 1 of 2

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 3– Mar. 2024

Sub: Advanced Java& J2EE
Sub

Code:
22MCA341

Date: 13/3/2024 Duration: 90 min’s Max Marks: 50 Sem: III Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I

MARKS

OBE

CO

RBT

1 Explain exception and methods that are provided in collection interface.
OR

10 CO1 L2

2. Create a class STUDENT with 2 private string members : USN,NAME using

LinkedList class in java. Write a program to add atleast 3 objects of above

STUDENT class. Also display the data in neat format.

10 CO2 L4

3
PART II

Explain the following methods of StringBuffer class.

i)append() ii)insert() iii)reverse() iv)replace()
OR

10

CO1

L2

4. Explain the constructors of TreeSet class and write a java program to create
TreeSet collection and access via iterator.

10 CO1,CO2 L2

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 3– Mar. 2024

Sub: Advanced Java& J2EE
Sub

Code:
22MCA341

Date: 13/3/2024 Duration: 90 min’s Max Marks: 50 Sem: III Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I

MARKS

OBE

CO

RBT

1 Explain exception and methods that are provided in collection interface.
OR

10 CO1 L2

2. Create a class STUDENT with 2 private string members : USN,NAME using

LinkedList class in java. Write a program to add atleast 3 objects of above

STUDENT class. Also display the data in neat format.

10 CO2 L4

3

PART II

Explain the following methods of StringBuffer class.

i)append() ii)insert() iii)reverse() iv)replace()
OR

10

CO1

L2

4. Explain the constructors of TreeSet class and write a java program to create

TreeSet collection and access via iterator.

10 CO1,CO2 L2

Page 2 of 2

5 PART III

Explain the following legacy classes with an example. i)HashTable ii)Vector
OR

 10 CO1 L2

6 Write a program to check if two accepted strings are the rotation of each other. A

string is said to be a rotation of other string if they contain same characters and the

sequence is rotated across any character. Example “dabc” is a rotation of “abcd”

but “dbac” is not.

 10 CO2 L4

7
PART IV

Define String Handling? Explain Special string operations with example.

 10 CO1 L2

8

OR

Explain the following collection interfaces.

i) Queue ii)SortedSet

10

CO1

L2

9

PART V

Explain ArrayList class and explain following methods:
i)binarysearch ii)copyOf() iii)equals() iv)fill

OR

10

CO1

L2

10 Write a program to find the first repeated and non-repeated character in a given

string.

 10 CO2 L4

5 PART III

Explain the following legacy classes with an example. i)HashTable ii)Vector
OR

 10 CO1 L2

6 Write a program to check if two accepted strings are the rotation of each other. A

string is said to be a rotation of other string if they contain same characters and the

sequence is rotated across any character. Example “dabc” is a rotation of “abcd”

but “dbac” is not.

 10 CO2 L4

7
PART IV

Define String Handling? Explain Special string operations with example.

 10 CO1 L2

8

OR

Explain the following collection interfaces.

i) Queue ii)SortedSet

10

CO1

L2

9
PART V

Explain ArrayList class and explain following methods:
i)binarysearch ii)copyOf() iii)equals() iv)fill

OR

10

CO1

L2

10 Write a program to find the first repeated and non-repeated character in a given

string.

 10 CO2 L4

Page 3 of 2

1. Explain exception and methods that are provided in collection interface.

The methods defined by collection are

In Java, the Collections interface doesn't directly raise exceptions itself since it's an interface and doesn't provide implementation.

However, the classes that implement the Collections interface (like List, Set, Map, etc.) can raise various exceptions depending

on the operation being performed. Some common exceptions raised during collection operations include:

1. NullPointerException: This is commonly thrown when attempting to perform an operation on a null object reference, such as

adding a null element to a collection that doesn't support null elements.

2. ClassCastException: This exception is thrown when attempting to add an element of an incompatible type to a collection. For

example, trying to add a String to a collection of Integers.

3. IllegalArgumentException: This exception can be thrown for various reasons, such as trying to add an element to a collection

that violates its constraints or passing an illegal argument to a method.

4. UnsupportedOperationException: This exception indicates that an unsupported operation was attempted on a collection. For

example, trying to modify an immutable collection or removing an element from an unmodifiable collection.

5. **ConcurrentModificationException**: This exception occurs when a collection is modified while it is being iterated over by a

different thread. This can happen, for example, if elements are added or removed from a collection while it is being iterated over

using an iterator.

Page 4 of 2

These are some of the common exceptions raised during collection operations in Java. The specific exceptions raised may vary

depending on the implementation and usage context. It's important to handle these exceptions appropriately in our code to ensure

robustness and reliability.

2. Create a class STUDENT with 2 private string members : USN,NAME using

LinkedList class in java. Write a program to add atleast 3 objects of above STUDENT class. Also display the

data in neat format.

import java.util.LinkedList;

import java.util.Iterator;

class Student {

 private String USN;

 private String name;

 public Student(String USN, String name) {

 this.USN = USN;

 this.name = name;

 }

 public String getUSN() {

 return USN;

 }

 public String getName() {

 return name;

 }

}

public class Main {

 public static void main(String[] args) {

 LinkedList<Student> students = new LinkedList<>();

 students.add(new Student("1", "Alice"));

 students.add(new Student("2", "Bob"));

 students.add(new Student("3", "Charlie"));

 System.out.println("Student Details:");

 System.out.println("----------------");

 Iterator<Student> iterator = students.iterator();

 while (iterator.hasNext()) {

 Student student = iterator.next();

 System.out.println("USN: " + student.getUSN() + ", Name: " + student.getName());

 }

 }

}

2. Explain the following methods of StringBuffer class. i)append() ii)insert()

iii)reverse() iv)replace()

i)append()

The append() method concatenates the string representation of any other type of data

to the

end of the invoking StringBuffer object. It has several overloaded versions. Here are a

few

Page 5 of 2

of its forms:

StringBuffer append(String str)

StringBuffer append(int num)

StringBuffer append(Object obj)

String.valueOf() is called for each parameter to obtain its string representation. The

result is appended to the current StringBuffer object. The buffer itself is returned by

each

version of append(). This allows subsequent calls to be chained together, as shown in

the

following example:

// Demonstrate append().

class appendDemo {

public static void main(String args[]) {

String s;

int a = 42;

StringBuffer sb = new StringBuffer(40);

s = sb.append("a = ").append(a).append("!").toString();

System.out.println(s);

}

}

ii)insert()

The insert() method inserts one string into another. It is overloaded to accept values of all the simple types, plus

Strings, Objects, and CharSequences. Like append(), it calls String.valueOf() to obtain the string representation

of the value it is called with. This string is then inserted into the invoking StringBuffer object. These are a few of

its forms:

StringBuffer insert(int index, String str)

StringBuffer insert(int index, char ch)

StringBuffer insert(int index, Object obj)

Here, index specifies the index at which point the string will be inserted into the invoking StringBuffer object.

The following sample program inserts “like” between “I” and “Java”:

// Demonstrate insert().

class insertDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("I Java!");

sb.insert(2, "like ");

System.out.println(sb);

}

}

iii)reverse()

You can reverse the characters within a StringBuffer object using reverse(), shown here:

StringBuffer reverse()

This method returns the reversed object on which it was called.

 The following program demonstrates reverse():

// Using reverse() to reverse a StringBuffer.

class ReverseDemo {

public static void main(String args[]) {

StringBuffer s = new StringBuffer("abcdef");

System.out.println(s);

s.reverse();

System.out.println(s);

}

}

Page 6 of 2

iv)replace()

You can replace one set of characters with another set inside a StringBuffer object by

calling

replace(). Its signature is shown here:

StringBuffer replace(int startIndex, int endIndex, String str)

The substring being replaced is specified by the indexes startIndex and endIndex.

Thus, the

substring at startIndex through endIndex1 is replaced. The replacement string is passed

in – str.

The resulting StringBuffer object is returned.

The following program demonstrates replace():

// Demonstrate replace()

class replaceDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("This is a test.");
sb.replace(5, 7, "was");

System.out.println("After replace: " + sb); } }
4. Explain the constructors of TreeSet class and write a java program to create

TreeSet collection and access via iterator.

TreeSet extends AbstractSet and implements the NavigableSet interface. It creates a

collection that uses a tree for storage. Objects are stored in sorted, ascending order. Access

and retrieval times are quite fast, which makes TreeSet an excellent choice when storing large

amounts of sorted information that must be found quickly.

TreeSet is a generic class that has this declaration:

class TreeSet<E>

Here, E specifies the type of objects that the set will hold.

TreeSet has the following constructors:

TreeSet()

TreeSet(Collection<? extends E> c)

TreeSet(Comparator<? super E> comp)

TreeSet(SortedSet<E> ss)

The first form constructs an empty tree set that will be sorted in ascending order according

to the natural order of its elements. The second form builds a tree set that contains the elements

of c. The third form constructs an empty tree set that will be sorted according to the comparator

specified by comp. (Comparators are described later in this chapter.) The fourth form builds

a tree set that contains the elements of ss

import java.util.TreeSet;

import java.util.Iterator;

public class Main {

 public static void main(String[] args) {

 TreeSet<String> treeSet = new TreeSet<>();

 // Adding elements to the TreeSet

 treeSet.add("Apple");

 treeSet.add("Banana");

 treeSet.add("Orange");

 treeSet.add("Grapes");

 // Accessing elements using iterator

 System.out.println("Elements in TreeSet:");

 System.out.println("--------------------");

 Iterator<String> iterator = treeSet.iterator();

 while (iterator.hasNext()) {

 String element = iterator.next();

Page 7 of 2

 System.out.println(element);

 }

 }

}
5. Explain the following legacy classes with an example. i)HashTable ii)Vector

Hashtable stores key/value pairs in a hash table. However, neither keys
nor values can be null. When using a Hashtable, you specify an object that is used as a key,
and the value that you want linked to that key. The key is then hashed, and the resulting

hash code is used as the index at which the value is stored within the table.
Hashtable was made generic by JDK 5. It is declared like this:
class Hashtable<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
A hash table can only store objects that override the hashCode() and equals() methods
that are defined by Object. The hashCode() method must compute and return the hash code

for the object. Of course, equals() compares two objects. Fortunately, many of Java’s built-in
classes already implement the hashCode() method. For example, the most common type of
Hashtable uses a String object as the key. String implements both hashCode() and equals().

The Hashtable constructors are shown here:
Hashtable()
Hashtable(int size)

Hashtable(int size, float fillRatio)
Hashtable(Map<? extends K, ? extends V> m)

Page 8 of 2

import java.util.*;

class HTDemo2 {
public static void main(String args[]) {
Hashtable<String, Double> balance = new Hashtable<String, Double>();

String str;
double bal;
balance.put("John Doe", 3434.34);

balance.put("Tom Smith", 123.22);
balance.put("Jane Baker", 1378.00);
balance.put("Tod Hall", 99.22);

balance.put("Ralph Smith", -19.08);
// Show all balances in hashtable.
// First, get a set view of the keys.

Set<String> set = balance.keySet();
// Get an iterator.
Iterator<String> itr = set.iterator();

while(itr.hasNext()) {
str = itr.next();
System.out.println(str + ": " +

balance.get(str));
}
System.out.println();

// Deposit 1,000 into John Doe's account.
bal = balance.get("John Doe");
balance.put("John Doe", bal+1000);

System.out.println("John Doe's new balance: " +
balance.get("John Doe"));
}

}

ii)Vector

Vector implements a dynamic array. It is similar to ArrayList, but with two differences: Vector is synchronized, and it contains

many legacy methods that are not part of the Collections Framework. With the advent of collections, Vector was reengineered to

extend AbstractList and to implement the List interface. With the release of JDK 5, it was retrofitted for generics and

reengineered to implement Iterable. This means that Vector is fully compatible with collections,

and a Vector can have its contents iterated by the enhanced for loop.

Vector is declared like this:

class Vector<E>

Here, E specifies the type of element that will be stored.

Here are the Vector constructors:

Vector()

Vector(int size)

Vector(int size, int incr)

Vector(Collection<? extends E> c)

Page 9 of 2

// Demonstrate various Vector operations.
import java.util.*;
class VectorDemo {

public static void main(String args[]) {
// initial size is 3, increment is 2
Vector<Integer> v = new Vector<Integer>(3, 2);

System.out.println("Initial size: " + v.size());
System.out.println("Initial capacity: " +
v.capacity());

v.addElement(1);
v.addElement(2);
v.addElement(3);

v.addElement(4);
System.out.println("Capacity after four additions: " +
v.capacity());

v.addElement(5);
System.out.println("Current capacity: " +
v.capacity());

v.addElement(6);
v.addElement(7);
System.out.println("Current capacity: " +

v.capacity());
v.addElement(9);
v.addElement(10);

System.out.println("Current capacity: " +
v.capacity());
v.addElement(11);

v.addElement(12);
System.out.println("First element: " + v.firstElement());
System.out.println("Last element: " + v.lastElement());

Page 10 of

2

if(v.contains(3))

System.out.println("Vector contains 3.");
// Enumerate the elements in the vector.
Enumeration vEnum = v.elements();

System.out.println("\nElements in vector:");
while(vEnum.hasMoreElements())
System.out.print(vEnum.nextElement() + " ");

System.out.println();
}
}

6. Write a program to check if two accepted strings are the rotation of each other. A string is said to be a

rotation of other string if they contain same characters and the sequence is rotated across any character.

Example “dabc” is a rotation of “abcd” but “dbac” is not.

// Java program to check if two given strings are
// rotations of each other

class StringRotation {

 /* Function checks if passed strings (str1 and str2)

 are rotations of each other */
 static boolean areRotations(String str1, String str2)
 {

 // There lengths must be same and str2 must be
 // a substring of str1 concatenated with str1.
 return (str1.length() == str2.length()) &&

 ((str1 + str1).contains(str2));
 }

 // Driver method
 public static void main(String[] args)
 {

 String str1 = "AACD";
 String str2 = "ACDA";

 if (areRotations(str1, str2))
 System.out.println("Yes");
 else

 System.out.printf("No");
 }
}

7. Define String Handling? Explain Special string operations with example.

Page 11 of

2

8. Explain the following collection interfaces.

i) Queue ii)SortedSet

i)Queue

ii)The SortedSet Interface

The SortedSet interface extends Set and declares the behavior of a set sorted in ascending

order. SortedSet is a generic interface that has this declaration:

interface SortedSet<E>

Here, E specifies the type of objects that the set will hold.

In addition to those methods defined by Set, the SortedSet interface declares the methods

summarized in Table 17-3. Several methods throw a NoSuchElementException when no

items are contained in the invoking set. A ClassCastException is thrown when an object

is incompatible with the elements in a set. A NullPointerException is thrown if an attempt is

made to use a null object and null is not allowed in the set. An IllegalArgumentException

is thrown if an invalid argument is used.

SortedSet defines several methods that make set processing more convenient. To obtain

Page 12 of

2

the first object in the set, call first(). To get the last element, use last(). You can obtain a subset

of a sorted set by calling subSet(), specifying the first and last object in the set. If you need

the subset that starts with the first element in the set, use headSet(). If you want the subset

that ends the set, use tailSet().

ii)The Queue Interface

 The Queue interface extends Collection and declares the behavior of a queue, which is often a first-in, first-out list. However,

there are types of queues in which the ordering is based upon other criteria. Queue is a generic interface that has this declaration:

interface Queue<E>

Several methods throw a ClassCastException when an object is incompatible with the elements in the queue. A

NullPointerException is thrown if an attempt is made to store a null object and null elements are not allowed in the queue. An

IllegalArgumentException is thrown if an invalid argument is used. An IllegalStateException is thrown if an attempt is made to

add an element to a fixed-length queue that is full. A NoSuchElementException is thrown if an attempt is made to remove an

element from an empty queue.

9. Explain ArrayList class and explain following methods:
i)binarysearch ii)copyOf() iii)equals() iv)fill

Page 13 of

2

i)binarysearch()
Searches for value in list ordered according to c. Returns the position of value in list, or a negative value if value is not

found.

Syntax: static int binarySearch(List list, T value, Comparator <? Super T> c)
ii)copyOf()
The copyOf() method was added by Java SE 6. It returns a copy of an array and has the
following forms:
static boolean[] copyOf(boolean[] source, int len)
static byte[] copyOf(byte[] source, int len)
static char[] copyOf(char[] source, int len)
static double[] copyOf(double[] source, int len)
static float[] copyOf(float[] source, int len)
static int[] copyOf(int[] source, int len)
static long[] copyOf(long[] source, int len)
static short[] copyOf(short[] source, int len)
static <T> T[] copyOf(T[] source, int len)
static <T,U> T[] copyOf(U[] source, int len, Class<? extends T[]> result T)
iii)equals()
The equals() method returns true if two arrays are equivalent. Otherwise, it returns false.
The equals() method has the following forms:
static boolean equals(boolean array1[], boolean array2[])
static boolean equals(byte array1[], byte array2[])
static boolean equals(char array1[], char array2[])
static boolean equals(double array1[], double array2[])
static boolean equals(float array1[], float array2[])
static boolean equals(int array1[], int array2[])
static boolean equals(long array1[], long array2[])
static boolean equals(short array1[], short array2[])
static boolean equals(Object array1[], Object array2[])
iv)fill()
The fill() method assigns a value to all elements in an array. In other words, it fills an
array with a specified value. The fill() method has two versions. The first version, which
has the following forms, fills an entire array:
static void fill(boolean array[], boolean value)
static void fill(byte array[], byte value)
static void fill(char array[], char value)
static void fill(double array[], double value)
static void fill(float array[], float value)
static void fill(int array[], int value)
static void fill(long array[], long value)
static void fill(short array[], short value)
static void fill(Object array[], Object value)

10.Write a program to find the first repeated and non-repeated character in a given string.
import java.util.HashMap;

import java.util.Map;

import java.util.Scanner;

public class Main {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter a string: ");

 String input = scanner.nextLine();

Page 14 of

2

 char firstRepeatedChar = findFirstRepeatedChar(input);

 char firstNonRepeatedChar = findFirstNonRepeatedChar(input);

 System.out.println("First repeated character: " + (firstRepeatedChar != '\0' ? firstRepeatedChar : "None"));

 System.out.println("First non-repeated character: " + (firstNonRepeatedChar != '\0' ? firstNonRepeatedChar : "None"));

 }

 public static char findFirstRepeatedChar(String str) {

 Map<Character, Integer> charCountMap = new HashMap<>();

 for (char c : str.toCharArray()) {

 charCountMap.put(c, charCountMap.getOrDefault(c, 0) + 1);

 }

 for (char c : str.toCharArray()) {

 if (charCountMap.get(c) > 1) {

 return c;

 }

 }

 return '\0'; // No repeated character found

 }

 public static char findFirstNonRepeatedChar(String str) {

 Map<Character, Integer> charCountMap = new HashMap<>();

 for (char c : str.toCharArray()) {

 charCountMap.put(c, charCountMap.getOrDefault(c, 0) + 1);

 }

 for (char c : str.toCharArray()) {

 if (charCountMap.get(c) == 1) {

 return c;

 }

 }

 return '\0'; // No non-repeated character found

 }

}

