
CMR INSTITUTE 
OF TECHNOLOGY

USN

Internal Assessment Test III – 
May2024

Sub: Data Structures Sub 
Code: 22MCA13

Date: 21/05/2024 Duration: 90 min’s Max Marks: 50 Sem: I Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I MARKS
OBE

CO RBT
1 Write a C program to simulate the working of a singly linked list providing

the following operations: a. Insert begin/ insert last b. Delete from the
beginning/end  d. Display.                   

OR

[10] CO1 L1

2 Write a program to implement stack operations push(), pop() and Display()
using singly linked list [10] CO1 L2

3
PART II

Define a binary tree. With example show array and linked representation of binary tree . 
Discuss the disadvantages of Array Representation                                                            

OR
[10] CO2 L2

4 Mention different types of binary trees and explain them briefly. With example explain 
the following i) Degree of a node, ii)Level of a binary tree iii)Siblings. [10] CO2 L2

PART III
5. Write the C-routines to traverse the tree using i) Inorder ii) Pre-order  iii) Post-order. 

Also find the traversals for the given tree:

OR
6. What is a graph? Write the terminologies used in graph.

Explain adjacency matrix and adjacency list representation of graphs with example.
PART IV

7. i) Construct a binary search tree for  inputs  22, 14, 18, 50, 9, 15, 7, 6, 12, 32, 25
 ii) Construct a binary tree where Preorder and Inorder of a traversal yields the 
following sequence of nodes. Inorder: 8,4,10,9,11,2,5,1,6,3,7 
Preorder:1,2,4,8,9,10,11,5,3,6,7      OR                 

8. What is threaded binary tree? Write the rules to construct the threads and 
explain with example.

PART V
9. Sort the numbers given below using radix sort and insertion sort 345, 654, 924, 

123, 567, 472, 555, 808, 911 with appropriate figure. OR
10.  What is collision? Explain various methods for resolving Hash collisions.

1. Write a C program to simulate the working of a singly linked list providing the following 
operations: a. Insert begin/ insert last b. Delete from the beginning/end  d. Display

[10] CO2 L2

[10] CO3 L2

[10] CO2 L2

[10] CO2 L2

[10] CO3 L3

[10] CO2 L3



#include<stdio.h>
#include<stdlib.h>
struct node
{
 int data;
 struct node *next;
};

struct node *head;
void beginsert ();
void begin_delete();
void last_delete();
void random_delete();
void display();
void search();

void main ()
{
 int choice =0;
 while(choice != 9)
 {
  printf("\n\n*********Main Menu*********\n");

 printf("\nChoose one option from the following list ...\n");
 printf("\n===============================================\n");
 printf("\n1.Insert in begining\n
  2.Delete from Beginning\n
  3.Delete from last\n
  4.Delete node after specified location\n
  5.Search for an element\n
  6.Show\n7.Exit\n");

 printf("\nEnter your choice?\n");
 scanf("\n%d",&choice);
 switch(choice)
 {
  case 1:
   beginsert();
   break;
  case 2:
   begin_delete();
   break;
  case 3:
   last_delete();
   break;
  case 4:
   random_delete();
   break;
  case 5:
   search();
   break;
  case 6:
   display();
   break;
  case 7:



    exit(0);
    break;
   default:
    printf("Please enter valid choice..");
  }
 }
}
void beginsert()
{
 struct node *ptr;
 int item;
 ptr = (struct node *) malloc(sizeof(struct node *));

 if(ptr == NULL)
 {
  printf("\nOVERFLOW");
 }
 else
 {
  printf("\nEnter value\n");
  scanf("%d",&item);
  ptr->data = item;
  ptr->next = head;
  head = ptr;
  printf("\nNode inserted");
 }
}
void begin_delete()
{
 struct node *ptr;

if(head == NULL)
{
 printf("\nList is empty\n");
}
else
{
 ptr = head;
 head = ptr->next;
 free(ptr);

  printf("\nNode deleted from the begining ...\n");
 }
}
void last_delete()
{
 struct node *ptr,*ptr1;
 if(head == NULL)
 {
  printf("\nlist is empty");
 }
 else if(head -> next == NULL)
 {



  head = NULL;
  free(head);
  printf("\nOnly node of the list deleted ...\n");
 }
 else
 { ptr = head;
  while(ptr->next != NULL)
  {
   ptr1 = ptr;
   ptr = ptr ->next;
  }
  ptr1->next = NULL;
  free(ptr);
  printf("\nDeleted Node from the last ...\n");
 }
}
void random_delete()
{
 struct node *ptr,*ptr1;
 int loc,i;
 printf("\n Enter the location of the node after which you want to perform deletion \n");
 scanf("%d",&loc);
 ptr=head;
 for(i=0;i<loc;i++)
 {
  ptr1 = ptr;
  ptr = ptr->next;
  if(ptr == NULL)
  {
   printf("\nCan’t delete");
   return;
  }
 }
 ptr1 ->next = ptr ->next;
 free(ptr);
 printf("\nDeleted node %d ",loc+1);
}

void search()
{
 struct node *ptr;

int item,i=0,flag=1;
ptr = head;
if(ptr == NULL)
{
 printf("\nEmpty List\n");
}
else
{
 printf("\nEnter item which you want to search?\n");
 scanf("%d",&item);

 while (ptr!=NULL)
 {



  if(ptr->data == item)
  {
   printf("item found at location %d ",i+1);
   flag=0;
                      break;
  }

  i++;
  ptr = ptr -> next;
 }
 if(flag==1)
    printf("Item not found\n");

 }
}
void display()
{
 struct node *ptr;
 ptr = head;
 if(ptr == NULL)
 { printf("Nothing to print");
 }
 else
 { printf("\nprinting values . . . . .\n");
  while (ptr!=NULL)
  {
   printf("\n%d",ptr->data);
   ptr = ptr -> next;
  }
      }
}

2. Write a program to implement stack operations push(), pop() and Display()
using singly linked list 

#include <stdio.h> 
#include <stdlib.h> 
void push(); void 
pop(); void 
display(); struct 
node 
{ int 
val; 
struct node *next; 
}; 
struct node *head; 
void main () 
{ 
int choice=0; 
printf("\n*********Stack operations using linked list*********\n"); printf("\n----------------
------------------------------\n"); 
while(choice != 4) 
 { 
printf("\n\nChose one from the below options...\n"); 
printf("\n1.Push\n2.Pop\n3.Show\n4.Exit"); 
printf("\n Enter your choice \n"); scanf("%d",&choice); 
switch(choice) 
 { 
case 1: 
 { 
push(); break; 



 } case 
2: 
 { 
pop(); break; 
 } case 
3: 
 { 
display(); break; 
 } case 
4: 
 { 
printf("Exiting...."); break; 
 } default: 
 { 
printf("Please Enter valid choice "); 
 } 
 }; 
} } void push () { int val; struct node *ptr = (struct 
node*)malloc(sizeof(struct node)); 
if(ptr == NULL) 
 { 
printf("not able to push the element"); 
 } 
else
 { 
printf("Enter the value"); 
scanf("%d",&val); if(head==NULL) 
 { 
ptr->val = val; ptr -
> next = NULL; 
head=ptr; 
 } 
else
 { 
ptr->val = val; ptr->next 
= head; head=ptr; 
 } 
printf("Item pushed"); 
 } } 
void pop() { int 
item; struct node 
*ptr; if (head == 
NULL) 
 { 
printf("Underflow"); 
 } 
else
 { 
item = head->val; ptr 
= head; 
head = head->next; 
free(ptr); printf("Item 
popped"); 
 } } void 
display() { 
int i; struct 
node *ptr; 
ptr=head; if(ptr 
== NULL) 
 { 



printf("Stack is empty\n"); 
 } 
else
 { 
printf("Printing Stack elements \n"); 
while(ptr!=NULL) 
 { 
printf("%d\n",ptr->val); ptr 
= ptr->next; 
 } 
 } } 

3. Define a binary tree. With example show array and linked representation of binary tree . Discuss the 
disadvantages of Array Representation                                                            

4.



Mention different types of binary trees and explain them briefly. With example explain the 
following i) Degree of a node, ii) Level of a binary tree iii)Siblings.

The tree is a nonlinear data structure. This structure is mainly used to represent data containing a hierarchical 
relationship between elements, e.g., records, family trees and tables of contents. A tree structure means that 
the data are   organized in a hierarchical manner.

         Definition: A tree is a finite set of one or more nodes such that
i) There is a specially designated node called the root.
ii) The re ma ining nodes are partitioned into n ≥0 disjoint sets T1, T2, …, Tn, where each of these sets is a tree. T1, 

T2, …, Tn, are called the subtrees of the root.
 

        

 



 



5. Write the C-routines to traverse the tree using i) Inorder ii) Pre-order  iii) Post-order. 
Also find the traversals for the given tree:



void postorder (struct node *root)
{
  if (root != NULL)
    {
      postorder (root->left);
      postorder (root->right);
      printf ("%d ", root->data);
    }
}

Solution
Preorder: 1 2 4 5 8 3 6  7 9 10
Inorder : 4 2 8 5 1 6 3 9 7 10
Post-order : 4 8 5 2 6 9 10 7 3 1 

6. What is a graph? Write the terminologies used in graph.
Explain adjacency matrix and adjacency list representation of graphs with example 
A graph is a mathematical structure used to model pairwise relations between objects. It consists of two main 
components:
Vertices (or Nodes): The fundamental units that represent objects in the graph.
Edges (or Links): The connections between pairs of vertices that represent the relationship between these objects.
Terminologies Used in Graph
Vertex (Node): A fundamental part of a graph, representing an entity.
Edge (Link): A connection between two vertices in a graph.
Adjacent Vertices: Two vertices that are connected by an edge.
Degree: The number of edges incident to a vertex. In directed graphs, we have:
In-degree: Number of incoming edges to a vertex.
Out-degree: Number of outgoing edges from a vertex.
Path: A sequence of edges that connects two vertices.
Cycle: A path that starts and ends at the same vertex without repeating any edge or vertex.
Connected Graph: A graph in which there is a path between every pair of vertices.
Subgraph: A graph formed from a subset of the vertices and edges of another graph.
Weighted Graph: A graph in which edges have weights or costs associated with them.
Directed Graph (Digraph): A graph where edges have a direction, going from one vertex to another.



Undirected Graph: A graph where edges have no direction.

Representations of Graph
Here are the two most common ways to represent a graph :
1. Adjacency Matrix
1. Adjacency List

Adjacency Matrix
An adjacency matrix is a way of representing a graph as a matrix of boolean (0’s 
and 1’s).
Let’s assume there are n vertices in the graph So, create a 2D 
matrix adjMat[n][n] having dimension n x n.
 If there is an edge from vertex i to j, mark adjMat[i][j] as 1.
 If there is no edge from vertex i to j, mark adjMat[i][j] as 0.
Representation of Undirected Graph to Adjacency Matrix:
The below figure shows an undirected graph. Initially, the entire Matrix is 
initialized to 0. If there is an edge from source to destination, we insert 1 to both 
cases (adjMat[destination] and adjMat[destination]) because we can go either 
way.

Undirected Graph to Adjacency Matrix

Representation of Directed Graph to Adjacency Matrix:
The below figure shows a directed graph. Initially, the entire Matrix is initialized 
to 0. If there is an edge from source to destination, we insert 1 for that 
particular adjMat[destination].



Directed Graph to Adjacency Matrix

Adjacency List
An array of Lists is used to store edges between two vertices. The size of array is equal to the 
number of vertices (i.e, n). Each index in this array represents a specific vertex in the graph. 
The entry at the index i of the array contains a linked list containing the vertices that are 
adjacent to vertex i.
Let’s assume there are n vertices in the graph So, create an array of list of 
size n as adjList[n].
 adjList[0] will have all the nodes which are connected (neighbour) to vertex 0.
 adjList[1] will have all the nodes which are connected (neighbour) to vertex 1 and so on.
Representation of Undirected Graph to Adjacency list:
The below undirected graph has 3 vertices. So, an array of list will be created of size 3, where 
each indices represent the vertices. Now, vertex 0 has two neighbours (i.e, 1 and 2). So, insert 
vertex 1 and 2 at indices 0 of array. Similarly, For vertex 1, it has two neighbour (i.e, 2 and 0) 
So, insert vertices 2 and 0 at indices 1 of array. Similarly, for vertex 2, insert its neighbours in 
array of list.

Undirected Graph to Adjacency list



Representation of Directed Graph to Adjacency list:
The below directed graph has 3 vertices. So, an array of list will be created of size 3, where 
each indices represent the vertices. Now, vertex 0 has no neighbours. For vertex 1, it has two 
neighbour (i.e, 0 and 2) So, insert vertices 0 and 2 at indices 1 of array. Similarly, for vertex 2, 
insert its neighbours in array of list.

7. Construct a binary search tree for  inputs  22, 14, 18, 50, 9, 15, 7, 6, 12, 32, 25
 ii) Construct a binary tree where Preorder and Inorder of a traversal yields the following 
sequence of nodes. Inorder: 8,4,10,9,11,2,5,1,6,3,7 Preorder:1,2,4,8,9,10,11,5,3,6,7

8. What is threaded binary tree? Write the rules to construct the threads and 
explain with example.



9. Sort the numbers given below using radix sort and insertion sort 345, 654, 924, 
123, 567, 472, 555, 808, 911 with appropriate figure. 

Insertion sort is a simple sorting algorithm that builds the final sorted array one 
item at a time. It is much less efficient on large lists than more advanced 
algorithms such as quicksort, heapsort, or merge sort. However, it has the 
advantage of being simple to implement and efficient for small lists or arrays that 
are already mostly sorted.

Initial list: 345, 654, 924, 123, 567, 472, 555, 808, 911
Pass 1: (345 is already in the correct position)

List: 345, 654, 924, 123, 567, 472, 555, 808, 911
Pass 2: List: 345, 654, 924, 123, 567, 472, 555, 808, 911
Pass 3: List: 345, 654, 924, 123, 567, 472, 555, 808, 911



Pass 4: List: 123, 345, 654, 924, 567, 472, 555, 808, 911
Pass 5: List: 123, 345, 567, 654, 924, 472, 555, 808, 911
Pass 6: List: 123, 345, 472, 567, 654, 924, 555, 808, 911
Pass 7: List: 123, 345, 472, 555, 567, 654, 924, 808, 911
Pass 8: List: 123, 345, 472, 555, 567, 654, 808, 924, 911
Pass 9: List: 123, 345, 472, 555, 567, 654, 808, 911, 924

Final Sorted List:
123, 345, 472, 555, 567, 654, 808, 911, 924

Radix sort is a non-comparative sorting algorithm that sorts 
numbers by processing individual digits. It typically 
processes digits from the least significant to the most 
significant (LSD Radix Sort). Here's the step-by-step process 
of sorting the given list using radix sort:
Given list:
345, 654, 924, 123, 567, 472, 555, 808, 911
Radix Sort Process

1. Identify the maximum number of digits:
 The largest number is 924, which has 3 digits. Hence, we need to sort 

based on 3 digit positions (units, tens, and hundreds).
2. Sorting by the least significant digit (units place):

 Given list: 345, 654, 924, 123, 567, 472, 555, 808, 911
 Buckets based on units place:

0:
1: 911
2: 472
3: 123
4: 924
        5: 345, 555
6: 654
7: 567
8: 808
9:

Combined list after sorting by units place:
List: 911, 472, 123, 924, 345, 555, 654, 567, 808

3. Sorting by the tens place:
 Given list after previous step: 911, 472, 123, 924, 345, 555, 654, 567, 808
 Buckets based on tens place:

0:
1: 123
2:
3: 345
4: 472
5: 555
6: 654, 567
7:
8: 808
9: 911, 924

Combined list after sorting by tens place:
List: 123, 345, 555, 567, 654, 472, 808, 911, 924

4. Sorting by the hundreds place:
 Given list after previous step: 123, 345, 555, 567, 654, 472, 808, 911, 924
 Buckets based on hundreds place:

0:
1:
2:
3: 345
4: 472
5: 555, 567
6: 654



7:
8: 808
9: 911, 924

Combined list after sorting by hundreds place:
List: 123, 345, 472, 555, 567, 654, 808, 911, 924

Final Sorted List:
123, 345, 472, 555, 567, 654, 808, 911, 924

10.  What is collision? Explain various methods for resolving Hash collisions.

Hashing in data structure falls into a collision if two keys are assigned the same index number in the hash table. The 
collision creates a problem because each index in a hash table is supposed to store only one value. Hashing in data 
structure uses several collision resolution techniques to manage the performance of a hash table.

It is a process of finding an alternate location. 
There are two types of collision resolution techniques.
 Separate chaining (open hashing)
 Open addressing (closed hashing)
Separate chaining: This method involves making a linked list out of the slot where the collision happened, then 
adding the new key to the list. Separate chaining is the term used to describe how this connected list of slots 
resembles a chain. It is more frequently utilized when we are unsure of the number of keys to add or remove.
Time complexity
 Its worst-case complexity for searching is o(n).
 Its worst-case complexity for deletion is o(n).
Advantages of separate chaining
 It is easy to implement.
 The hash table never fills full, so we can add more elements to the chain.
 It is less sensitive to the function of the hashing.
Disadvantages of separate chaining
 In this, the cache performance of chaining is not good.
 Memory wastage is too much in this method.
 It requires more space for element links.
Open addressing: To prevent collisions in the hashing table, open addressing is employed as a collision-resolution 
technique. No key is kept anywhere else besides the hash table. As a result, the hash table’s size is never equal to 
or less than the number of keys. Additionally known as closed hashing.
The following techniques are used in open addressing:
 Linear probing
 Quadratic probing
 Double hashing
Linear probing: This involves doing a linear probe for the following slot when a collision occurs and continuing to 
do so until an empty slot is discovered.
The worst time to search for an element in linear probing is O. The cache performs best with linear probing, but 
clustering is a concern. This method’s key benefit is that it is simple to calculate.
Disadvantages of linear probing: 
 The main problem is clustering.
 It takes too much time to find an empty slot.
Quadratic probing: When a collision happens in this, we probe for the i2-nd slot in the ith iteration, continuing to do 
so until an empty slot is discovered. In comparison to linear probing, quadratic probing has a worse cache 
performance. Additionally, clustering is less of a concern with quadratic probing.
Double hashing: In this, you employ a different hashing algorithm, and in the ith iteration, you look for (i * hash 
2(x)). The determination of two hash functions requires more time. Although there is no clustering issue, the 
performance of the cache is relatively poor when using double probing.

https://www.geeksforgeeks.org/separate-chaining-collision-handling-technique-in-hashing/

