CMR INSTITUTE

OFTECHNOLOGY \
Internal Assessment Test IIT —
May2024
Sub: Data Structures Sub 22MCA13
Code:
Date: 21/05/2024 | Duration: | 90 min’s | MaxMarks: | 50 | Sem: | I | Branch: MCA
Note : Answer FIVE FULL Questions, choosing ONE full question from each Module
OBE
PART1 MARKS
CO | RBT
1 Write a C program to simulate the working of a singly linked list providing
the following operations: a. Insert begin/ insert last b. Delete from the [10] coll L1
beginning/end d. Display.
OR
2 Write a program to implement stack operations push(), pop() and Display() coll 12
using singly linked list [10]
PART II
3 Define a binary tree. With example show array and linked representation of binary tree .
Discuss the disadvantages of Array Representation [o) |C€O2| L2
OR
4 Mention different types of binary trees and explain them briefly. With example explain
the following i) Degree of a node, ii)Level of a binary tree iii)Siblings. (o) |02 L2
PART III
5. Write the C-routines to traverse the tree using i) Inorder ii) Pre-order iii) Post-order.
Also find the traversals for the given tree:
OR
6. What js a graph? Write _the termipologies psed in graph.. . [10] CO3| L2
Explain adjacency matrix and adjacency list representation of graphs with example.
PART IV
7. 1) Construct a binary search tree for inputs 22, 14, 18, 50, 9, 15, 7, 6, 12, 32, 25
ii) Construct a binary tree where Preorder and Inorder of a traversal yields the [10] coal| 12
following sequence of nodes. Inorder: 8,4,10,9,11,2,5,1,6,3,7
Preorder:1,2,4,8,9,10,11,5,3,6,7 OR
8. What is threaded binary tree? Write the rules to construct the threads and
o [10] CO2| L2
explain with example.
PARTYV
9. Sort the numbers given below using radix sort and insertion sort 345, 654, 924, [10] co3 | 13
123,567,472, 555, 808, 911 with appropriate figure. OR
10. What is collision? Explain various methods for resolving Hash collisions.
[10] | coz2| L3
1. Write a C program to simulate the working of a singly linked list providing the following

operations: a. Insert begin/ insert last b. Delete from the beginning/end d. Display

#include<stdio.h>

#include<stdlib.h>
struct node

{

int data;

struct node *next;

35

struct node *head;
void beginsert ();
void begin_delete();
void last_delete();
void random_delete();
void display();

void search();

void main ()

{

int choice =0;
while(choice !=9)

printf("\n\nFFFFFEEEENqIn MenuFFFEFEEEE\G),

printf("\nChoose one option from the following list ...\n");
printf("\n \n");
printf("\n1.Insert in begining\n

2.Delete from Beginning\n

3.Delete from last\n

4.Delete node after specified location\n

5.Search for an element\n

6.Show\n7.Exit\n");

printf("\nEnter your choice?\n");
scanf("\n%d",&choice);

switch(choice)

{

case 1:
beginsert();
break;

case 2:

begin delete();
break;

case 3:
last_delete();
break;

case 4:
random_delete();
break;

case 5:

search();

break;

case 6:

display();

break;

case 7:

exit(0);

break;

default:

printf("Please enter valid choice..");
}
}

void beginsert()

{

struct node *ptr;

int item;

ptr = (struct node *) malloc(sizeof(struct node *));

if(ptr == NULL)

printf(""nOVERFLOW");
H
else
{
printf("\nEnter value\n");
scanf("%d",&item);
ptr->data = item;
ptr->next = head;
head = ptr;
printf("\nNode inserted");
H

h

void begin_delete()

{

struct node *ptr;

if(head == NULL)

{

printf("\nList is empty\n");
H

else

{

ptr = head;

head = ptr->next;

free(ptr);

printf("\nNode deleted from the begining ...\n");
H

void last_delete()

{

struct node *ptr,*ptrl;
if(head == NULL)
printf("\nlist is empty");

else if(head -> next == NULL)
{

head = NULL;

free(head);

printf("\nOnly node of the list deleted ...\n");
}

else
{ ptr = head;
while(ptr->next != NULL)
{
ptrl = ptr;
ptr = ptr ->next;
}
ptrl->next = NULL;
free(ptr);
printf("\nDeleted Node from the last ...\n");
H

void random_delete()
{
struct node *ptr,*ptrl;
int loc,i;
printf("\n Enter the location of the node after which you want to perform deletion \n");
scanf("%d",&loc);
ptr=head;
for(i=0;i<loc;i++)
{
ptrl = ptr;
ptr = ptr->next;
if(ptr ==NULL)
{
printf("\nCan’t delete");
return;
H
h
ptrl ->next = ptr ->next;
free(ptr);
printf("\nDeleted node %d ",loc+1);
H

void search()

{

struct node *ptr;

int item,i=0,flag=1;

ptr = head;

if(ptr == NULL)

{

printf("\nEmpty List\n");

}

else

{

printf("\nEnter item which you want to search?\n");
scanf("%d",&item);

while (ptr!=NULL)
{

if(ptr->data == item)
{
printf("item found at location %d ",i+1);
flag=0;
break;
h

it+;
ptr = ptr -> next;
}
if(flag==1)
printf("Item not found\n");

}

H
void display()

struct node *ptr;
ptr = head;
if(ptr == NULL)
{ printf("Nothing to print");
}
else
{ printf("\nprinting values \n");
while (ptr!=NULL)
{
printf("\n%d" ,ptr->data);
ptr = ptr -> next;
§
§
}
2. Write a program to implement stack operations push(), pop() and Display()
using singly linked list
#include <stdio.h>
#include <stdlib.h>
void push(); void
pop(); void
display(); struct
node
{ int
val;
struct node *next;
}s
struct node *head;
void main ()
{
int choice=0;
printf("M\n*********Gtack operations using linked list*********\n"), printf("\n----------------
\n");

while(choice !=4)

printf("\n\nChose one from the below options...\n");
printf("\n1.Push\n2.Pop\n3.Show\n4.Exit");

printf("\n Enter your choice \n"); scanf("%d",&choice);
switch(choice)

{

case 1:

{
push(); break;

} case

2:
{

pop(); break;
} case

3:

display(); break;

} case
4:

{
printf("Exiting...."); break;

} default:

{
printf("Please Enter valid choice ");

}

}
} } void push () { int val; struct node *ptr = (struct
node*)malloc(sizeof(struct node));
if(ptr == NULL)

printf("not able to push the element");
H

else
{
printf("Enter the value");
scanf("%d",&val); if(head==NULL)
{
ptr->val = val; ptr -
>next = NULL;
head=ptr;
}
else
{
ptr->val = val; ptr->next
= head; head=ptr;
}
printf("Item pushed");
bl
void pop() { int
item; struct node
*ptr; if (head ==
NULL)

{
printf("Underflow");
;

else
{
item = head->val; ptr
= head;
head = head->next;
free(ptr); printf("Item
popped");
} } void
display() {
int 1; struct
node *ptr;
ptr=head; if(ptr
== NULL)
{

printf("Stack is empty\n");
}

else

{
printf("Printing Stack elements \n");
while(ptr!=NULL)

{
printf("%d\n",ptr->val); ptr
= ptr->next;

}
I

3. Define a binary tree. With example show array and linked representation of binary tree . Discuss the
disadvantages of Array Representation
BINARY TREES

A binary tree is a special kind of tree which can be easily maintained in the computer. Although such a tree may
seem to be very restrictive, more general trees may be viewed as binary trees.

A binary tree T is defined as a finite set of glements, called nodes, such that:

i) Tis empty (called the null tree or empty tree), or
i) T contains a distinguished node R, called the root of T, and the remaining nodes of T form an

ordered pair of disjoint binary trees T; and T..
a) If T does contain a root R, then the two trees T; and T. are called, respectively, the left and right

subtrees of R.

b) If T; is nonempty, then its root is called the left successor of R; similarly, if Tz is nonempty, then
its root is called the right successor of R.

Binary Tree Representations: Array and linked Representation of Binary Trees

Array Representation
The array or sequential representation of a tree uses a single one-dimensional array, TREE as follows:

1) The root R of T is stored in JREE[1].
2) If a node N occupies JREE[K], then its left child is stored in TREE[2*K] and its right child in

TREE[2* K+1].
Location 0 is not used.

NULL is used to indicate an empty subtree. TREE[1] = NULL indicates the tree is empty.
In other words, the nodes are numbered from 1 to n as per a full binary tree. Location 0 is not.used.
The nodes are then stored in a one-dimensional array whose position 0 is left e mpty, and the node
numbered x is..mapped. to position with index x in the array. We can easily determine the locations of
the parent, left child and right child of any node, i, in the binary tree using the following rule:

If a complete binary tree with n nodes is represented sequentially,
then for any node with indexi, 1 <i £n,

1) parent(i) is at Lir2] ifi =1.Ifj =1, iis at the root and has no parent.
2) leftChild(i) is at 2i if 2i £ n. If 2i > n, then I has no left child.
3) rightChild() is at 2i+1 if 2i+1 < n. If 2i+1 > n, then I has no right child.

The sequential representation of the binary tree T in Fig. 4.8(a) appears in Fig. 4.8(b).
TREE

-

L. ® N o, a0 N
™
-
iy
.

10
1

12
13
14
15

g

(a) (b) Fig. 4.8 Array Representation of Binary Tree

From the Fig.4.8 we see that even though T has only 9 nodes, 14 locations are..required to represent

the tree in the array.

Mention different types of binary trees and explain them briefly. With example explain the
following i) Degree of a node, ii) Level of a binary tree iii)Siblings.
The tree is a nonlinear data structure. This structure is mainly used to represent data containing a hierarchical
relationship between elements, e.g., records, family trees and tables of contents. A tree structure means that
the dataare organized in a hierarchical manner.

Definition: A tree is a finite set of one or more nodes such that
i) There is a specially designated node called the root.
ii) The remaining nodes are partitioned into n>0 disjoint sets T,, T,, ..., T,, where each ofthese sets is a tree. T,,
T,, ..., T,, are called the subtrees of the root.

LEVEL

Types of Binary Trees

There are various types of binary trees, and each of these binary tree types has

unique characteristics. Here are each of the binary tree types in detail:
1. Full Binary Tree

It is a special kind of a binary tree that has either zero children or two children. It
means that all the nodes in that binary tree should either have two child nodes of its

parent node or the parent node is itself the leaf node or the external node.

In other words, a full binary tree is a unigue binary tree where every node except the
external node has two children. When it holds a single child, such a binary tree will
not be a full binary tree. Here, the quantity of leaf nodes is equal to the number of
internal nodes plus one. The equation is like L=I+1, where L is the number of leaf

nodes, and | is the number of internal nodes.

2. Complete Binary Tree

A complete binary tree is another specific type of binary tree where all the tree levels
are filled entirely with nodes, except the lowest level of the tree. Also, in the last or
the lowest level of this binary tree, every node should possibly reside on the left side.

Here is the structure of a complete binary tree:

AP AT T

3. Perfect Binary Tree

A binary tree is said to be ‘perfect’ if all the internal nodes have strictly two children,
and every external or leaf node is at the same level or same depth within a tree. A
perfect binary tree having height ‘h’ has 2h — 1 node. Here is the structure of a

perfect binary tree:

A

4. Balanced Binary Tree

A binary tree is said to be ‘balanced’ if the tree height is O(logN), where ‘N’ is the
number of nodes. In a balanced binary tree, the height of the left and the right

subtrees of each node should vary by at most one. An AVL Tree and a Red-Black
Tree are some common examples of data structure that can generate a balanced

binary search tree. Here is an example of a balanced binary tree:

5. Degenerate Binary Tree

A binary tree is said to be a degenerate binary tree or pathological binary tree if
every internal node has only a single child. Such trees are similar to a linked list

performance-wise. Here is an example of a degenerate binary tree:

There are many terms that are often used when referring to trees.

)

vii)

A node stands for the item of information plus the branches to other nodes.
Consider the tree in Fig.4.2. This tree has 13 nodes, each item of data being a single letter. The
root is A, and we will normally draw trees with the root at the top.

The numbe r of subtrees of a node is called its degree.
The degree of Ais 3, of Cjs I, and of F is zero.

Nodes that have degree zero are called leaf or terminal nodes.
{K.LFE,GM,I]} is the set of leaf nodes.

Consequently, the other nodes are referred to as nonterminals.

The roots of the subtrees of a node X are the children of X, X is the parent of its children.
Thus, the children of D are H, I, and J; the parent of D is A.

Every node N in a tree, except the root, has a unique parent, called the predecessor of N.

Children of the same parent are said to be siblings.
H, I, and] are siblings.

We can extend this terminology if we need to so that we can ask for the grandparent of M, which
is D, and so on.

viii) A node L is called a descendant of a node N if there is a succession of children from Nto L. Nis

ix)

called an ancestor of L

The degree of a tree is the maximum, of the degree of the nodes in the tree.
The tree of Fig.4.2 has degree 3. The ancestors of a node are all the nodes along the path from the

root to that node. The ancestors of M are A, D, and H.

The level of a node is defined by letting the root he at level one. If a node is at level |, then its
children are at level [+1.
Fig. 4.2 shows the level of all nodes in that tree.

The height or depth of a tree is defined to be the maxjmym level of any node in the tree. Thus,
the depth of the tree in Fig. 4.2 is 4.

5. Write the C-routines to traverse the tree using i) Inorder ii) Pre-order iii) Post-order.

Also find the traversals for the given tree:

C function for inorder traversal of a binary tree:
void inorder(treePtr root)
{ /¥ inorder tree traversal */f

if (root)

{

inorder(root->leftChild);
printf(“%d”, root-»>data);
inorder(root->rightChild);

}

C function for preorder traversal of a binary tree:
void preorder(treePtr root)
{ f* preorder tree traversal */
if (root)
{
printf(“%d”, root->data);
preorder(root-»leftChild);

preorder(root->rightChild);

}

void postorder (struct node *root)

{
if (root != NULL)
{
postorder (root->left);
postorder (root->right);
printf (""%d ", root->data);
}
}

Solution

Preorder: 1245836 7910
Inorder : 42851639710
Post-order : 48526910731

6. What is a graph? Write the terminologies used in graph.

Explain adjacency matrix and adjacency list representation of graphs with example

A graph is a mathematical structure used to model pairwise relations between objects. It consists of two main
components:

Vertices (or Nodes): The fundamental units that represent objects in the graph.

Edges (or Links): The connections between pairs of vertices that represent the relationship between these objects.
Terminologies Used in Graph

Vertex (Node): A fundamental part of a graph, representing an entity.

Edge (Link): A connection between two vertices in a graph.

Adjacent Vertices: Two vertices that are connected by an edge.

Degree: The number of edges incident to a vertex. In directed graphs, we have:

In-degree: Number of incoming edges to a vertex.

Out-degree: Number of outgoing edges from a vertex.

Path: A sequence of edges that connects two vertices.

Cycle: A path that starts and ends at the same vertex without repeating any edge or vertex.

Connected Graph: A graph in which there is a path between every pair of vertices.

Subgraph: A graph formed from a subset of the vertices and edges of another graph.

Weighted Graph: A graph in which edges have weights or costs associated with them.

Directed Graph (Digraph): A graph where edges have a direction, going from one vertex to another.

Undirected Graph: A graph where edges have no direction.

Representations of Graph

Here are the two most common ways to represent a graph :
1. Adjacency Matrix

1. Adjacency List

Adjacency Matrix
An adjacency matrix is a way of representing a graph as a matrix of boolean (0’s
and 1’s).
Let's assume there arenvertices in the graph So, create a 2D
matrix adjMat[n][n] having dimension n x n.
. Ifthere is an edge from vertex i to j, mark adjMat[i][j] as 1.
. Ifthere is no edge from vertex i to j, mark adjMat[i][j] as O.
Representation of Undirected Graph to Adjacency Matrix:
The below figure shows an undirected graph. Initially, the entire Matrix is
initialized to 0. If there is an edge from source to destination, we insert 1 to both
cases (adjMat[destination] and adjMat[destination]) because we can go either
way.

1 2
0 1 2
0 1 1
[g 1| 1 1
2 1 1
Undirected Graph Adjacency Matrix

Graph Representation of Undirected graph to Adjacency Matrix

Undirected Graph to Adjacency Matrix

Representation of Directed Graph to Adjacency Matrix:

The below figure shows a directed graph. Initially, the entire Matrix is initialized
to 0. If there is an edge from source to destination, we insert 1 for that
particular adjMat[destination].

1
0 1 2
|:'> i
1 1 1

Directed Graph Adjacency Matrix

Graph Representation of Directed graph to Adjacency Matrix

Directed Graph to Adjacency Matrix

Adjacency List
An array of Lists is used to store edges between two vertices. The size of array is equal to the
number of vertices (i.e, n). Each index in this array represents a specific vertex in the graph.
The entry at the index i of the array contains a linked list containing the vertices that are
adjacent to vertex i.
Let’'s assume there are n vertices in the graph So, create an array of list of
size n as adjList[n].
o adjList[0] will have all the nodes which are connected (neighbour) to vertex 0.
« adjList[1] will have all the nodes which are connected (neighbour) to vertex 1 and so on.
Representation of Undirected Graph to Adjacency list:
The below undirected graph has 3 vertices. So, an array of list will be created of size 3, where
each indices represent the vertices. Now, vertex 0 has two neighbours (i.e, 1 and 2). So, insert
vertex 1 and 2 at indices 0 of array. Similarly, For vertex 1, it has two neighbour (i.e, 2 and 0)
So, insert vertices 2 and 0 at indices 1 of array. Similarly, for vertex 2, insert its neighbours in
array of list.

Array Linked List
1 2
0 ——» 1 — 2 > Null
I::> 1 —>» 0 — 2 — Nul
2 —>» 0 — 1 [—Nul

Undirected Graph Adjacency List

Graph Representation of Undirected graph to Adjacency List

Undirected Graph to Adjacency list

Representation of Directed Graph to Adjacency list:

The below directed graph has 3 vertices. So, an array of list will be created of size 3, where
each indices represent the vertices. Now, vertex 0 has no neighbours. For vertex 1, it has two
neighbour (i.e, 0 and 2) So, insert vertices 0 and 2 at indices 1 of array. Similarly, for vertex 2,
insert its neighbours in array of list.

Array Linked List
: (2)
0
I:> 1 —>» 0 —> 2 — Nul

o 2 —>» 0 —Nul

Directed Graph Adjacency List

Graph Representation of Directed graph to Adjacency List

7. Construct a binary search tree for inputs 22, 14, 18,50, 9, 15, 7, 6, 12, 32, 25
ii) Construct a binary tree where Preorder and Inorder of a traversal yields the following
sequence of nodes. Inorder: 8,4,10,9,11,2,5,1,6,3,7 Preorder:1,2,4,8,9,10,11,5,3,6,7

8. What is threaded binary tree? Write the rules to construct the threads and
explain with example.

Threaded binary trees

In a linked representation of any binary tree, there are more links than actual pointers i.e. there are
n+1 null links out of 2n total links.

A.).Perlis and C. Thornton devised threaded binary tree in which they replaced the null links by
pointers called threads to other nodes in the tree.

To construct the threads, use the following rules:

i) If ptr->leftChild is null, replace ptr->leftChild with a pointer to the node that would be visited
before ptr in an inorder traversal i.e. the null is replaced with a po inter to the jnorder predecessor
of ptr.

i) If ptr-»>rightchild is null, replace ptr->rightChild with a pointer to the node that would be
visited after ptr in an inorder traversal i.e. the null is replaced with a pointer to the jnorder
successor of ptr.

A threaded binary tree is a binary tree which contains threads i.e. addresses of some nodes which
facilitate move ment in the tree.

5 5 ft i » o
Fig. 4.20 Threaded Binary Tree

Fig. 4.20 shows a binary tree and the corresponding binary tree. The threads are shown as
broken lines. This tree has 9 nodes and 10 threads. If we traverse the tree in ingrder, the nodes will be
visited in the order H, D, I, B, E, A, F, C, G. Example: node E has a predecessor thread that points to B
and a successor thread that points to A.

When the tree is represented is memory, two additional fields, leftThread and rightThread are
used to distinguish between threads and normal pointers. Assume that pfr is an arbitrary node in a
threaded tree.
If pir- =leftThread = TRUE, then pir- =leftChild contains a thread; otherwise it containsa pointer to the
left child.
Similarly, if_pir- =rightThread = TRUE, then pir- =rightChild contains a thread; otherwise it contains a
pointer to the right child.
This node structure is given by the following C declarations:

struct threadedTree

.[

short int leftThread;

struct threadedTree *leftchild;
int data;

struct threadedTree *rightchild;

short int rightThread;

s
typedef struct threadedTree *threadedPTR;

L ST I
: r‘ ' J'-
\ e AR ! =ul? Fig. 4.21 An empty threaded binary tree

9. Sort the numbers given below using radix sort and insertion sort 345, 654, 924,
123, 567,472, 555, 808, 911 with appropriate figure.
Insertion sort is a simple sorting algorithm that builds the final sorted array one
item at a time. It is much less efficient on large lists than more advanced
algorithms such as quicksort, heapsort, or merge sort. However, it has the
advantage of being simple to implement and efficient for small lists or arrays that
are already mostly sorted.
Initial list: 345, 654, 924, 123, 567, 472, 555, 808, 911
Pass 1: (345 is already in the correct position)
List: 345, 654, 924, 123, 567, 472, 555, 808, 911
Pass 2: List: 345, 654, 924, 123, 567, 472, 555, 808, 911
Pass 3: List: 345, 654, 924, 123, 567, 472, 555, 808, 911

Pass 4:
Pass 5:
Pass 6:
Pass 7:
Pass 8:
Pass 9:

List:
List:
List:
List:
List:
List:

123, 345, 654, 924, 567, 472, 555, 808, 911
123, 345, 567, 654, 924, 472, 555, 808, 911
123, 345, 472, 567, 654, 924, 555, 808, 911
123, 345, 472, 555, 567, 654, 924, 808, 911
123, 345, 472, 555, 567, 654, 808, 924, 911
123, 345, 472, 555, 567, 654, 808, 911, 924

Final Sorted List:

123, 345, 472, 555, 567, 654, 808, 911, 924

Radix sort is a non-comparative sorting algorithm that sorts
numbers by processing individual digits. It typically
processes digits from the least significant to the most
significant (LSD Radix Sort). Here's the step-by-step process
of sorting the given list using radix sort:

Given list:

345, 654, 924, 123, 567, 472, 555, 808, 911

Radix Sort Process

1. Identify the maximum number of digits:

The largest number is 924, which has 3 digits. Hence, we need to sort
based on 3 digit positions (units, tens, and hundreds).

2. Sorting by the least significant digit (units place):

Given list: 345, 654, 924, 123, 567, 472, 555, 808, 911

Buckets based on units place:
0:

: 911

: 472

: 123

: 924
5: 345, 555

: 654

: 567

: 808

9:

B W N -

R AN

Combined list after sorting by units place:

List: 911, 472, 123, 924, 345, 555, 654, 567, 808

3. Sorting by the tens place:

Given list after previous step: 911, 472, 123, 924, 345, 555, 654, 567, 808

¢ Buckets based on tens place:

: 123

: 345
: 472
: 555
: 654, 567

: 808
: 911, 924

Combined list after sorting by tens place:

List: 123, 345, 555, 567, 654, 472, 808, 911, 924

4. Sorting by the hundreds place:

Given list after previous step: 123, 345, 555, 567, 654, 472, 808, 911, 924

¢ Buckets based on hundreds place:

0:

: 345
: 472
: 555, 567
: 654

AN AW -

7:
8: 808
9: 911, 924
Combined list after sorting by hundreds place:
List: 123, 345, 472, 555, 567, 654, 808, 911, 924
Final Sorted List:
123, 345, 472, 555, 567, 654, 808, 911, 924

10. What is collision? Explain various methods for resolving Hash collisions.

Hashing in data structure falls into a collision if two keys are assigned the same index number in the hash table. The
collision creates a problem because each index in a hash table is supposed to store only one value. Hashing in data
structure uses several collision resolution techniques to manage the performance of a hash table.
It is a process of finding an alternate location.
There are two types of collision resolution techniques.
e Separate chaining (open hashing)
e Open addressing (closed hashing)
Separate chaining: This method involves making a linked list out of the slot where the collision happened, then
adding the new key to the list. Separate chaining is the term used to describe how this connected list of slots
resembles a chain. It is more frequently utilized when we are unsure of the number of keys to add or remove.
Time complexity
e |ts worst-case complexity for searching is o(n).
e lts worst-case complexity for deletion is o(n).
Advantages of separate chaining
e |tis easy to implement.
e The hash table never fills full, so we can add more elements to the chain.
e ltis less sensitive to the function of the hashing.
Disadvantages of separate chaining
e In this, the cache performance of chaining is not good.
e Memory wastage is too much in this method.
e |t requires more space for element links.
Open addressing: To prevent collisions in the hashing table, open addressing is employed as a collision-resolution
technique. No key is kept anywhere else besides the hash table. As a result, the hash table’s size is never equal to
or less than the number of keys. Additionally known as closed hashing.
The following techniques are used in open addressing:
e Linear probing
e Quadratic probing
e Double hashing
Linear probing: This involves doing a linear probe for the following slot when a collision occurs and continuing to
do so until an empty slot is discovered.
The worst time to search for an element in linear probing is O. The cache performs best with linear probing, but
clustering is a concern. This method’s key benefit is that it is simple to calculate.
Disadvantages of linear probing:
e The main problem is clustering.
e |t takes too much time to find an empty slot.
Quadratic probing: When a collision happens in this, we probe for the i2-nd slot in the it iteration, continuing to do
so until an empty slot is discovered. In comparison to linear probing, quadratic probing has a worse cache
performance. Additionally, clustering is less of a concern with quadratic probing.
Double hashing: In this, you employ a different hashing algorithm, and in the iw iteration, you look for (i * hash
2(x)). The determination of two hash functions requires more time. Although there is no clustering issue, the
performance of the cache is relatively poor when using double probing.

https://www.geeksforgeeks.org/separate-chaining-collision-handling-technique-in-hashing/

