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1. 

Parameter Backtracking Branch and Bound 

Approach 

Backtracking is used to find all possible 

solutions available to a problem. When 

it realises that it has made a bad choice, 

it undoes the last choice by backing it 

up. It searches the state space tree until 

it has found a solution for the problem.  

Branch-and-Bound is used to solve 

optimisation problems. When it realises that 

it already has a better optimal solution that 

the pre-solution leads to, it abandons that 

pre-solution. It completely searches the state 

space tree to get optimal solution. 

Traversal 
Backtracking traverses the state space 

tree by DFS(Depth First Search) manner. 

Branch-and-Bound traverse the tree in any 

manner, DFS or BFS. 

Function 
Backtracking involves feasibility 

function. 

Branch-and-Bound involves a bounding 

function. 

Problems 
Backtracking is used for solving Decision 

Problem. 

Branch-and-Bound is used for solving 

Optimisation Problem. 

Searching 
In backtracking, the state space tree is 

searched until the solution is obtained. 

In Branch-and-Bound as the optimum 

solution may be present any where in the 

state space tree, so the tree need to be 

searched completely. 

Efficiency Backtracking is more efficient. Branch-and-Bound is less efficient. 

Applications 

Useful in solving N-Queen Problem, Sum 

of subset, Hamilton cycle problem, 

graph coloring problem  

Useful in solving Knapsack 

Problem, Travelling Salesman Problem. 

Solve 
Backtracking can solve almost any 

problem. (chess, sudoku, etc ). 

Branch-and-Bound can not solve almost any 

problem. 

https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/breadth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/n-queen-problem-backtracking-3/
https://www.geeksforgeeks.org/subset-sum-backtracking-4/
https://www.geeksforgeeks.org/subset-sum-backtracking-4/
https://www.geeksforgeeks.org/subset-sum-backtracking-4/
https://www.geeksforgeeks.org/0-1-knapsack-using-branch-and-bound/
https://www.geeksforgeeks.org/0-1-knapsack-using-branch-and-bound/
https://www.geeksforgeeks.org/traveling-salesman-problem-using-branch-and-bound-2/


Used for  
Typically backtracking is used to solve 

decision problems. 

Branch and bound is used to solve 

optimization problems. 

Nodes  
Nodes in stat  space tree are explored in 

depth first tree. 

Nodes in tree may be explored in depth-first 

or breadth-first order. 

Next move  
Next move from current state can lead 

to bad choice. 
Next move is always towards better solution. 

Solution  
On successful search of  solution in state 

space tree, search stops. 

Entire state space tree is search in order to 

find optimal solution. 
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2. In a deterministic algorithm, for a given particular input, the computer will always produce the same 

output going through the same states but in the case of the non-deterministic algorithm, for the same 



input, the compiler may produce different output in different runs. In fact, non-deterministic 

algorithms can’t solve the problem in polynomial time and can’t determine what is the next step. The 

non-deterministic algorithms can show different behaviors for the same input on different execution 

and there is a degree of randomness to it. 

• A non-deterministic algorithm is one in which the outcome cannot be predicted with certainty, 

even if the inputs are known. 

• For a particular input the computer will give different outputs on different execution. 

• Can’t solve the problem in polynomial time. 

• Cannot determine the next step of execution due to more than one path the algorithm can 

take. 

• Operation are not uniquely defined.  

• Time complexity of non-deterministic algorithms is often described in terms of expected 

running time. 

• Non-deterministic algorithms may produce different outputs for the same input due to 

random events or other factors. 

• Non-deterministic algorithms are often used in applications where finding an exact solution is 

difficult or impractical, such as in artificial intelligence, machine learning, and optimization 

problems. 

• Examples of non-deterministic algorithms include probabilistic algorithms like Monte Carlo 

methods, genetic algorithms, and simulated annealing. 

Cook–Levin theorem shows that general CNF-SAT (Boolean satisfiability problem) is NP-complete. To get 
to Knapsack, one easy way is to: 

1. reduce CNF-SAT to 3-CNF-SAT (i.e., three literals per clause) — this is easy 
2. reduce 3-CNF-SAT to SubsetSum — see below for details 
3. reduce SubsetSum to Knapsack — again, should be easy enough to do on your own. 

For the second step, we need to find a many-one reduction from 3-SAT to SubsetSum — in other words, 
a poly-time-computable function that maps each 3-SAT instance to a collection of positive integers + a 
goal value in a way that preserves solvability. The construction below is slightly redundant for ease of 
explanation. 

Suppose your 3-SAT instance has n variables, labeled x0 through xn−1, and m clauses, numbered 0 
through m−1. The goal in our SubsetSum instance will be the following number (in base-10): 
s=33….33(upto m times)11…11(upto n times) 
The general idea is that the individual numbers for the instance will be constructed in such a way that: 

• Getting all the 1s at the end of s will correspond to choosing either “true” or “false” (but not 
both) for each variable. 

• Getting the 3s before them will correspond to having at least one true literal in each clause. 
Here is the construction: 

• For each positive literal xi we will have one integer ai=10i+∑j10n+j, where the sum goes over all 
clauses that contain this literal. 

https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Subset_sum_problem


• For each negative literal ¬xi we will have one integer bi=10i+∑j10n+j, where the sum goes over 
all clauses that contain this literal. 

• For each clause j, we will have two separate numbers cj=dj=10n+j 
 

And that’s the whole instance. So, we translated the 3-SAT instance “here is a list of clauses, 
is there a satisfying assignment of truth values?” to the SubsetSum instance “here is a 
collection of integers: all the ai,bi,cj,dj is there a subset of this collection with sum s?”. 
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4. A Las Vegas algorithm is an algorithm which uses randomness, but gives guarantees that the 

solution obtained for given problem is correct. It takes the risk with resources used. A quick-sort 

algorithm is a simple example of Las-Vegas algorithm. To sort the given array of n numbers quickly we 



use the quick sort algorithm. For that we find out central element which is also called as pivot element 

and each element is compared with this pivot element. Sorting is done in less time or it requires more 

time is dependent on how we select the pivot element. To pick the pivot element randomly we can 

use Las-Vegas algorithm.  

 Let us consider the above example of quick sort algorithm. In this algorithm we choose the pivot 
element randomly. But the result of this problem is always a sorted array. A Las-Vegas algorithm is 
having one restriction i.e. the solution for the given problem can be found out in finite time. In this 
algorithm the numbers of possible solutions arc limited. The actual solution is complex in nature or 
complicated to calculate but it is easy to verify the correctness of candidate solution.  

These algorithms always produce correct or optimum result. Time complexity of these algorithms is 
based on a random value and time complexity is evaluated as expected value. For example, 
Randomized Quick Sort always sorts an input array and expected worst case time complexity of Quick 
Sort is O(nLogn). 
 
The computational algorithms which rely on repeated random sampling to compute their results such 
algorithm are called as Monte-Carlo algorithms.  
The random algorithm is Monte-carlo algorithms if it can give the wrong answer sometimes.  

Whenever the existing deterministic algorithm is fail or it is impossible to compute the solution for 
given problem then Monte-Carlo algorithms or methods are used. Monte-carlo methods are best 
repeated computation of the random numbers, and that’s why these algorithms are used for solving 
physical simulation system and mathematical system. 

This Monte-carlo algorithms are specially useful for disordered materials, fluids, cellular structures. In 
case of mathematics these method are used to calculate the definite integrals, these integrals are 
provided with the complicated boundary conditions for multidimensional integrals. This method is 
successive one with consideration of risk analysis when compared to other methods. 

The Monte-carlo methods has wider range of applications. It uses in various areas like physical 
science, Design and visuals, Finance and business, Telecommunication etc. In general Monte carlo 
methods are used in mathematics. By generating random numbers we can solve the various problem. 
The problems which are complex in nature or difficult to solve are solved by using Monte-carlo 
algorithms. Monte carlo integration is the most common application of Monte-carlo algorithm. 

The deterministic algorithm provides a correct solution but it takes long time or its runtime is large. 
This run-time can be improved by using the Monte carlo integration algorithms. There are various 
methods used for integration by using Monte-carlo methods such as, 

i) Direct sampling methods which includes the stratified sampling, recursive 
stratified sampling, importance sampling. 

ii) Random walk Monte-carlo algorithm which is used to find out the integration for 
given problem. 
iii) Gibbs sampling. 

5.  

https://www.geeksforgeeks.org/randomized-algorithms-set-1-introduction-and-analysis/
https://www.geeksforgeeks.org/randomized-algorithms-set-1-introduction-and-analysis/
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