USN		 	 	 	 	
	USN					

Sub:	Mathematical H	Foundation for	r Computer A	pplications		Sub Code:	22MCA11	Branch:	MCA	A	
Date:	08/04/2024	Duration:	90 minutes	Max Marks:	50	Sem/Sec:	I	A&B		OF	BE
	Note: Answer	• FIVE FUL		<u>choosing ONE f</u> ART I	ull qu	estion from o	each part.	M	ARKS	CO	RBT
1	What is a propose allowed" and "sh an English senter	arks have bee	nd q be the pro	positions "swim shore" respectiv	ely. E				[10]	CO3	L2
2	Let the universe be write down the ting $p(1) \rightarrow r(1)$	p(x): ruth values of	x > 3, $q(x)$:): x + 1 is even	, r	$(x): x \leq 0$	s.	I	[10]	CO3	L2
3	State the followin iii) Identity Law		ic: i) De-Mo	PART II rgan's Law ii) : OR	Distri	butive Law			[10]	CO3	L2
4	Check whether the Mathematics or H Today is Tuesday	Economics. If	my Economic	lid or not. "If too s professor is sid	ck, I v	vill not have a	test in Econom	ics.	[10]	CO6	L3

<u>USN_</u>		 	 	 	CMRIT
					CMR INSTITUTE OF TECHNOLOGY, BENGALURU.

iternal	Assessment	Test II –	April2024

			Intern	al Assessment	Гest I	I – April2024	Ļ		8			
Sub:	Mathematical H	Foundation fo	r Computer Aj	oplications		Sub Code:	22MCA11	Brar	nch:	MCA	1	
Date:	/04/2024	Duration:	90 minutes	Max Marks:	50	Sem / Sec:	IA	A&B			OF	BE
	Note: Answe	r FIVE FUL		choosing ONE f	ùll qu	estion from o	each part.		MAI	RKS	CO	RBT
1	What is a propos allowed" and "sh an English senter	arks have bee	nd q be the pro en near the sea	shore" respectiv	vely. I			as		0]	CO3	L2
2	Let the universe write down the tive $p(1) \rightarrow r(1)$	p(x): ruth values of	x > 3, $q(x)$): x + 1 is even	l, r	$(x): x \le 0$			[1	0]	CO3	L2
3	State the followin iii) Identity Law	ng laws of log	ric: i) De-Mo	PART II rgan's Law ii) OR	Distri	butive Law			[1	0]	CO3	L2
4	Check whether Mathematics or I Today is Tuesday	Economics. If	my Economic	valid or not. " cs professor is si	ck, I	will not have	a test in Econon	nics.	[1	0]	CO6	L3

	PART III	[10]		
5	Define Tautology, Contradiction and Contingency. Check whether	[10]	CO3	L3
	$\{(p \lor q) \to r\} \longleftrightarrow \{\neg r \to \neg (p \lor q)\} \text{ is a tautology or not.} $ OR			
6	Negate and simplify the following: i) $\exists x, [p(x) \lor q(x) ii) \forall x, [p(x) \land \neg q(x) iii) \exists x, [\{p(x) \lor q(x)\} \to r(x)]$	[10]	CO3	L3
7	(a) Define the logical connective 'Conditional' with its truth table. (b) Write the converse, inverse and contrapositive of "If 2 is an integer then 9 is not a multiple of 3." OR	[10]	CO3	L1
8	Prove the following using laws of logic:	[10]	CO3	L3
	(i) $ [(p \lor q) \lor (\neg p \land \neg q \land r)] \Leftrightarrow (p \lor q \lor r) $ (ii) $ [p \to (q \land r)] \Leftrightarrow [(p \to q) \land (p \to r)] $			
	PART V			
9	Write the negation of (i) All Americans eat cheese burgers. (ii) There is a woman who has taken a flight on every airline in the world.	[10]	CO3	L3
	OR			
10	Check the validity of following argument using rules of inference. $p \rightarrow (q \rightarrow r)$	[10]	CO6	L3
	$\neg q \rightarrow \neg p$			
	p			
	<i>r</i>			

	PART III	[10]	CO3	L3
5	Define Tautology, Contradiction and Contingency. Check whether	[10]	COS	LS
	$\{(p \lor q) \to r\} \leftrightarrow \{\neg r \to \neg (p \lor q)\}$ is a tautology or not. OR			
6	Negate and simplify the following: i) $\exists x, [p(x) \lor q(x) \text{ii}) \forall x, [p(x) \land \neg q(x) \text{iii}) \exists x, [\{p(x) \lor q(x)\} \rightarrow r(x)]$	[10]	CO3	L3
7	(a) Define the logical connective 'Conditional' with its truth table. (b) Write the converse, inverse and contrapositive of "If 2 is an integer then 9 is not a multiple of 3." OR	[10]	CO3	L1
8	Prove the following using laws of logic:	[10]	CO3	L3
	$\begin{aligned} (i)[(p \lor q) \lor (\neg p \land \neg q \land r)] &\Leftrightarrow (p \lor q \lor r) \\ (ii)[p \to (q \land r)] &\Leftrightarrow [(p \to q) \land (p \to r)] \end{aligned}$			
	PART V			
9	Write the negation of (i) All Americans eat cheese burgers. (ii) There is a woman who has taken a flight on every airline in the world.	[10]	CO3	L3
	OR			
10	Check the validity of following argument using rules of inference.	[10]	CO6	L3
	p ightarrow (q ightarrow r)			
	$\neg q \rightarrow \neg p$			
	<i>p</i>			
	$\therefore r$			

IAT-II MFCA - 22MCAII

1. A proposition is a statement which is either true or false, but not both. 1) p -> 79 If swimming in the new rearry sea shore is allowed then sharks have not been near the sea share. If swimming in the new jearsy sea shore is not allowed ii) -1p→-79 then sharks have not been near the sea shore. Swimming in the New Jeansy sea shore is allowed if and iii) $p \leftrightarrow q$ only if sharks have been near the sea shore. 2. i) p(a): 2>3 which is false. Touth value is [0.] ii) p(3) V 7 r(3) P(3): 373 Truth value 150] 7(3): 350 -72(3): 3>0 Touth value is 1 P(3) V - r(3) Since one of them is true, the gaven open statement is thee. That value OVI is []. iii) $p(2) \land q(3)$ Truth value is (0). pC2): 2>3 This is a galse statement. false. 9(3) = 3+1 is even. This is a true statement. p(2) 19 (3) : ON 1 = O Since one of them is false, grown conjunction is

iv) p(1) -> r(1) P(1): 173 This is a false statement. $\gamma(1): 1 \leq 0$ p(1) -> r(1) This conditional is true as a conditional 0 -> 0 is jalse only when just part is 1 & second port is 0. Truth value is [] 3. i) De-Morganis Law: a) -(9/9) (=> -1pv -19 b) ¬(pvq) ⇐> ¬pл ¬q ii) Distributive Law: a) pr(qvr) (prq) v(prr) b) pv (qAr) () (pv2) A (pv2) iii) Identity Law : a) PATO (=> P b) pVFo <=> p 4. Let p: Today is Tuesday 2: I have a test in Mathematics. r: I have a test in Economics. s: My Economics Professor is sick. Given argument is $p \rightarrow (q \vee r)$ $p \rightarrow (q \vee r)$ => 9 VY Modus Pones for I & III pournises " ____ I & I premises 78 This is valid in view of Modus Tollens. 79 ->~ 4=)

5. Tautology: A compound proposition is sald to be a tautology if it is always true regardless of thick values of its components. Contradiction: _______ if it is always falle ______ Contradiction: _______ if it is always falle ______

			ction				a	
٩	9	r	pvq	(pvg)->r	77	-1(pvq)	-TT->-(pvq)	0~2
0	0	0	0	1	J	1	1	1
	0	1	Ø	1	0	1	,	
5	t	0	1	0	+	0	0	1
0		1	i	1	0	0	1	1
	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	ð	1	0	1	0	Ø	1
1	1)	J	1	0	0	1	1

Since all theentries of the last column are 1s, gren compound proposition is a tautology.

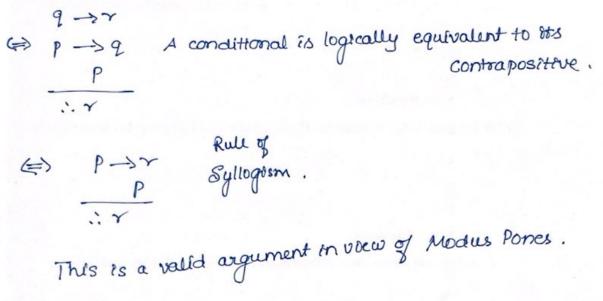
6. i) Negation is: $\neg \{\exists x, \lfloor p(x) \lor q(x)\}\}$ $\iff \forall x, \neg \lfloor p(x) \lor q(x) \rfloor$ $\iff \forall x, \neg p(x) \land \neg q(x)$ ii) Negation: $\neg \{\forall x, \lfloor p(x) \land \neg q(x) \rfloor\}$ $\iff \exists x, \neg \lfloor p(x) \land \neg q(x) \rfloor$ $\iff \exists x, \neg p(x) \lor q(x)$ iii) Negation: $\neg \{\exists x, \lfloor p(x) \lor q(x) \rbrace \rightarrow r(x) \rfloor$ $\iff \forall x, \neg \lfloor p(x) \lor q(x) \rbrace \rightarrow r(x) \rfloor$ $\iff \forall x, \neg \lfloor p(x) \lor q(x) \rbrace \rightarrow r(x) \rfloor$ $\iff \forall x, \{p(x) \lor q(x) \} \land \neg r(x)$ 7. (DA compound proposition obtained by inserting the words if ... then ... in appropriate places is called a conditional.

If p then q is denoted by p -> q. we read it as 'is p theng'.

ρ	9	$p \rightarrow q$
0	0	J
0	1	J
1	0	0
1	1	1

(b) Let p: 2 is an integer. q: q is a multiple of 3. Given p -> 79 convense: 72 -> p ie., If 9 is not a multiple of 3 then 2 is an integer. Inverse: 7p -> 9 ie., If 2 is not an integer then 9 is a multiple of 3. Contrapositive: q -> -p ic., If 9 is a multiple of 3 then 2 is not an integer. (i) LHS = $[CPVQ]V(\neg p \land \neg q \land \gamma)$ 8. $\langle \Rightarrow (pvq) \vee (\neg (pvq) \land \gamma)$ De-Morgan's Law <=> [(pvq) v -1(pvq)] ~ [pvqvr] Distributive Law (=) To A (puqur) Inverse Law (=> pvqvr Identity Law = RHS

(i) LHS =
$$p \rightarrow cqAr$$
)
(ii) LHS = $p \rightarrow cqAr$)
(iii) $P \rightarrow q \iff \neg p \lor q$
(iii) $P \rightarrow q \iff \neg p \lor q$
(iv) $(\neg p \lor q) \land (\neg p \lor r)$
(iv) $Distributive Law$
(iv) $(p \rightarrow q) \land (\neg p \lor r)$
(iv) $\neg p \lor q \iff p \rightarrow q$
= RHS.


9. (i) Let A: set of all Americans, be the Universe. p(x): x eats cheese burgers.

Given $\forall x \in A \cdot p(x)$ Negation: $\neg [\forall x \in A \cdot p(x)]$ $(\Rightarrow) \exists x \in A \cdot \neg p(x)$

ie., Some Americans do not eat cheese burgers. (ii) let the Universe be U: set of all women. pow: 2 has taken a flight on every airline on the world.

Groen Freu, pou) Negation: - [Freu, pou) L=> VEREU, -pou)

No woman bases taken every airline in the world.

